Branch-and-check methods for multi-level operating room planning and scheduling
We develop the first exact decomposition approaches for a multi-level operating room planning and scheduling problem that integrates case mix planning, master surgical scheduling, and surgery sequencing in the presence of multiple surgical specialties. Our approaches consist of novel uni-level and b...
Gespeichert in:
Veröffentlicht in: | International journal of production economics 2020-02, Vol.220, p.107433, Article 107433 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107433 |
container_title | International journal of production economics |
container_volume | 220 |
creator | Roshanaei, Vahid Booth, Kyle E.C. Aleman, Dionne M. Urbach, David R. Beck, J. Christopher |
description | We develop the first exact decomposition approaches for a multi-level operating room planning and scheduling problem that integrates case mix planning, master surgical scheduling, and surgery sequencing in the presence of multiple surgical specialties. Our approaches consist of novel uni-level and bi-level branch-and-check algorithms that solve the problem using a hybridization of integer programming and constraint programming. We demonstrate that our approaches outperform an existing time-indexed integer programming model, yielding significant improvements on solution quality. Our methods are competitive with an existing genetic algorithm while providing provable bounds on solution quality. We conduct an investigation into the impact of time discretization on our algorithms, illustrating that our decompositions, unlike the previously proposed integer programming approach, are much less sensitive to time discretization and produce more accurate solutions as a result. Finally, we introduce and investigate benchmark instances with a more diverse case mix. Overall, we conclude that our decompositions are the most appropriate approaches for this multi-level operating room planning and scheduling problem. |
doi_str_mv | 10.1016/j.ijpe.2019.07.006 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_incontextgauss__A614980947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A614980947</galeid><els_id>S0925527319302439</els_id><sourcerecordid>A614980947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-6bf4c4822784eb3590d4e616ab94186cffbb6e746b8bb1e2527a5ff910fceb243</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6yyYudgO46dSGxKxUuq1A2sLdsZtw5JXNlpBX9PorJmNbrSPaOZg9AdJTklVDy0uW_3kDNC65zInBBxhha0kgWWpazP0YLUrMQlk8UlukqpJYRIWlULtHmKerA7rIcG2x3Yr6yHcRealLkQs_7QjR53cIQuC3uIevTDNosh9Nm-08Mwp4nM0oQ2h26KN-jC6S7B7d-8Rp8vzx-rN7zevL6vlmtsC8FHLIzjlleMyYqDKcqaNBwEFdrUnFbCOmeMAMmFqYyhwKbLdelcTYmzYBgvrtH9ae9Wd6D8YMMwwve41YeUlFoKyuuK1FxORXYq2hhSiuDUPvpexx9FiZrdqVbN7tTsThGpJncT9HiCYHrh6CGqZD0MFhofwY6qCf4__Bc4Y3iH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Branch-and-check methods for multi-level operating room planning and scheduling</title><source>Access via ScienceDirect (Elsevier)</source><creator>Roshanaei, Vahid ; Booth, Kyle E.C. ; Aleman, Dionne M. ; Urbach, David R. ; Beck, J. Christopher</creator><creatorcontrib>Roshanaei, Vahid ; Booth, Kyle E.C. ; Aleman, Dionne M. ; Urbach, David R. ; Beck, J. Christopher</creatorcontrib><description>We develop the first exact decomposition approaches for a multi-level operating room planning and scheduling problem that integrates case mix planning, master surgical scheduling, and surgery sequencing in the presence of multiple surgical specialties. Our approaches consist of novel uni-level and bi-level branch-and-check algorithms that solve the problem using a hybridization of integer programming and constraint programming. We demonstrate that our approaches outperform an existing time-indexed integer programming model, yielding significant improvements on solution quality. Our methods are competitive with an existing genetic algorithm while providing provable bounds on solution quality. We conduct an investigation into the impact of time discretization on our algorithms, illustrating that our decompositions, unlike the previously proposed integer programming approach, are much less sensitive to time discretization and produce more accurate solutions as a result. Finally, we introduce and investigate benchmark instances with a more diverse case mix. Overall, we conclude that our decompositions are the most appropriate approaches for this multi-level operating room planning and scheduling problem.</description><identifier>ISSN: 0925-5273</identifier><identifier>EISSN: 1873-7579</identifier><identifier>DOI: 10.1016/j.ijpe.2019.07.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Analysis ; Branch-and-check ; Business schools ; Hybrid IP/CP ; Logic-based Benders decomposition ; Medical policy ; Methods ; Multi-level decomposition ; Multi-specialty operating room scheduling</subject><ispartof>International journal of production economics, 2020-02, Vol.220, p.107433, Article 107433</ispartof><rights>2019</rights><rights>COPYRIGHT 2020 Elsevier Science Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-6bf4c4822784eb3590d4e616ab94186cffbb6e746b8bb1e2527a5ff910fceb243</citedby><cites>FETCH-LOGICAL-c364t-6bf4c4822784eb3590d4e616ab94186cffbb6e746b8bb1e2527a5ff910fceb243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpe.2019.07.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Roshanaei, Vahid</creatorcontrib><creatorcontrib>Booth, Kyle E.C.</creatorcontrib><creatorcontrib>Aleman, Dionne M.</creatorcontrib><creatorcontrib>Urbach, David R.</creatorcontrib><creatorcontrib>Beck, J. Christopher</creatorcontrib><title>Branch-and-check methods for multi-level operating room planning and scheduling</title><title>International journal of production economics</title><description>We develop the first exact decomposition approaches for a multi-level operating room planning and scheduling problem that integrates case mix planning, master surgical scheduling, and surgery sequencing in the presence of multiple surgical specialties. Our approaches consist of novel uni-level and bi-level branch-and-check algorithms that solve the problem using a hybridization of integer programming and constraint programming. We demonstrate that our approaches outperform an existing time-indexed integer programming model, yielding significant improvements on solution quality. Our methods are competitive with an existing genetic algorithm while providing provable bounds on solution quality. We conduct an investigation into the impact of time discretization on our algorithms, illustrating that our decompositions, unlike the previously proposed integer programming approach, are much less sensitive to time discretization and produce more accurate solutions as a result. Finally, we introduce and investigate benchmark instances with a more diverse case mix. Overall, we conclude that our decompositions are the most appropriate approaches for this multi-level operating room planning and scheduling problem.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Branch-and-check</subject><subject>Business schools</subject><subject>Hybrid IP/CP</subject><subject>Logic-based Benders decomposition</subject><subject>Medical policy</subject><subject>Methods</subject><subject>Multi-level decomposition</subject><subject>Multi-specialty operating room scheduling</subject><issn>0925-5273</issn><issn>1873-7579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6yyYudgO46dSGxKxUuq1A2sLdsZtw5JXNlpBX9PorJmNbrSPaOZg9AdJTklVDy0uW_3kDNC65zInBBxhha0kgWWpazP0YLUrMQlk8UlukqpJYRIWlULtHmKerA7rIcG2x3Yr6yHcRealLkQs_7QjR53cIQuC3uIevTDNosh9Nm-08Mwp4nM0oQ2h26KN-jC6S7B7d-8Rp8vzx-rN7zevL6vlmtsC8FHLIzjlleMyYqDKcqaNBwEFdrUnFbCOmeMAMmFqYyhwKbLdelcTYmzYBgvrtH9ae9Wd6D8YMMwwve41YeUlFoKyuuK1FxORXYq2hhSiuDUPvpexx9FiZrdqVbN7tTsThGpJncT9HiCYHrh6CGqZD0MFhofwY6qCf4__Bc4Y3iH</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Roshanaei, Vahid</creator><creator>Booth, Kyle E.C.</creator><creator>Aleman, Dionne M.</creator><creator>Urbach, David R.</creator><creator>Beck, J. Christopher</creator><general>Elsevier B.V</general><general>Elsevier Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202002</creationdate><title>Branch-and-check methods for multi-level operating room planning and scheduling</title><author>Roshanaei, Vahid ; Booth, Kyle E.C. ; Aleman, Dionne M. ; Urbach, David R. ; Beck, J. Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-6bf4c4822784eb3590d4e616ab94186cffbb6e746b8bb1e2527a5ff910fceb243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Branch-and-check</topic><topic>Business schools</topic><topic>Hybrid IP/CP</topic><topic>Logic-based Benders decomposition</topic><topic>Medical policy</topic><topic>Methods</topic><topic>Multi-level decomposition</topic><topic>Multi-specialty operating room scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roshanaei, Vahid</creatorcontrib><creatorcontrib>Booth, Kyle E.C.</creatorcontrib><creatorcontrib>Aleman, Dionne M.</creatorcontrib><creatorcontrib>Urbach, David R.</creatorcontrib><creatorcontrib>Beck, J. Christopher</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of production economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roshanaei, Vahid</au><au>Booth, Kyle E.C.</au><au>Aleman, Dionne M.</au><au>Urbach, David R.</au><au>Beck, J. Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Branch-and-check methods for multi-level operating room planning and scheduling</atitle><jtitle>International journal of production economics</jtitle><date>2020-02</date><risdate>2020</risdate><volume>220</volume><spage>107433</spage><pages>107433-</pages><artnum>107433</artnum><issn>0925-5273</issn><eissn>1873-7579</eissn><abstract>We develop the first exact decomposition approaches for a multi-level operating room planning and scheduling problem that integrates case mix planning, master surgical scheduling, and surgery sequencing in the presence of multiple surgical specialties. Our approaches consist of novel uni-level and bi-level branch-and-check algorithms that solve the problem using a hybridization of integer programming and constraint programming. We demonstrate that our approaches outperform an existing time-indexed integer programming model, yielding significant improvements on solution quality. Our methods are competitive with an existing genetic algorithm while providing provable bounds on solution quality. We conduct an investigation into the impact of time discretization on our algorithms, illustrating that our decompositions, unlike the previously proposed integer programming approach, are much less sensitive to time discretization and produce more accurate solutions as a result. Finally, we introduce and investigate benchmark instances with a more diverse case mix. Overall, we conclude that our decompositions are the most appropriate approaches for this multi-level operating room planning and scheduling problem.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ijpe.2019.07.006</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5273 |
ispartof | International journal of production economics, 2020-02, Vol.220, p.107433, Article 107433 |
issn | 0925-5273 1873-7579 |
language | eng |
recordid | cdi_gale_incontextgauss__A614980947 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Analysis Branch-and-check Business schools Hybrid IP/CP Logic-based Benders decomposition Medical policy Methods Multi-level decomposition Multi-specialty operating room scheduling |
title | Branch-and-check methods for multi-level operating room planning and scheduling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Branch-and-check%20methods%20for%20multi-level%20operating%20room%20planning%20and%20scheduling&rft.jtitle=International%20journal%20of%20production%20economics&rft.au=Roshanaei,%20Vahid&rft.date=2020-02&rft.volume=220&rft.spage=107433&rft.pages=107433-&rft.artnum=107433&rft.issn=0925-5273&rft.eissn=1873-7579&rft_id=info:doi/10.1016/j.ijpe.2019.07.006&rft_dat=%3Cgale_cross%3EA614980947%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A614980947&rft_els_id=S0925527319302439&rfr_iscdi=true |