Branch-and-check methods for multi-level operating room planning and scheduling

We develop the first exact decomposition approaches for a multi-level operating room planning and scheduling problem that integrates case mix planning, master surgical scheduling, and surgery sequencing in the presence of multiple surgical specialties. Our approaches consist of novel uni-level and b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production economics 2020-02, Vol.220, p.107433, Article 107433
Hauptverfasser: Roshanaei, Vahid, Booth, Kyle E.C., Aleman, Dionne M., Urbach, David R., Beck, J. Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107433
container_title International journal of production economics
container_volume 220
creator Roshanaei, Vahid
Booth, Kyle E.C.
Aleman, Dionne M.
Urbach, David R.
Beck, J. Christopher
description We develop the first exact decomposition approaches for a multi-level operating room planning and scheduling problem that integrates case mix planning, master surgical scheduling, and surgery sequencing in the presence of multiple surgical specialties. Our approaches consist of novel uni-level and bi-level branch-and-check algorithms that solve the problem using a hybridization of integer programming and constraint programming. We demonstrate that our approaches outperform an existing time-indexed integer programming model, yielding significant improvements on solution quality. Our methods are competitive with an existing genetic algorithm while providing provable bounds on solution quality. We conduct an investigation into the impact of time discretization on our algorithms, illustrating that our decompositions, unlike the previously proposed integer programming approach, are much less sensitive to time discretization and produce more accurate solutions as a result. Finally, we introduce and investigate benchmark instances with a more diverse case mix. Overall, we conclude that our decompositions are the most appropriate approaches for this multi-level operating room planning and scheduling problem.
doi_str_mv 10.1016/j.ijpe.2019.07.006
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_incontextgauss__A614980947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A614980947</galeid><els_id>S0925527319302439</els_id><sourcerecordid>A614980947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-6bf4c4822784eb3590d4e616ab94186cffbb6e746b8bb1e2527a5ff910fceb243</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6yyYudgO46dSGxKxUuq1A2sLdsZtw5JXNlpBX9PorJmNbrSPaOZg9AdJTklVDy0uW_3kDNC65zInBBxhha0kgWWpazP0YLUrMQlk8UlukqpJYRIWlULtHmKerA7rIcG2x3Yr6yHcRealLkQs_7QjR53cIQuC3uIevTDNosh9Nm-08Mwp4nM0oQ2h26KN-jC6S7B7d-8Rp8vzx-rN7zevL6vlmtsC8FHLIzjlleMyYqDKcqaNBwEFdrUnFbCOmeMAMmFqYyhwKbLdelcTYmzYBgvrtH9ae9Wd6D8YMMwwve41YeUlFoKyuuK1FxORXYq2hhSiuDUPvpexx9FiZrdqVbN7tTsThGpJncT9HiCYHrh6CGqZD0MFhofwY6qCf4__Bc4Y3iH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Branch-and-check methods for multi-level operating room planning and scheduling</title><source>Access via ScienceDirect (Elsevier)</source><creator>Roshanaei, Vahid ; Booth, Kyle E.C. ; Aleman, Dionne M. ; Urbach, David R. ; Beck, J. Christopher</creator><creatorcontrib>Roshanaei, Vahid ; Booth, Kyle E.C. ; Aleman, Dionne M. ; Urbach, David R. ; Beck, J. Christopher</creatorcontrib><description>We develop the first exact decomposition approaches for a multi-level operating room planning and scheduling problem that integrates case mix planning, master surgical scheduling, and surgery sequencing in the presence of multiple surgical specialties. Our approaches consist of novel uni-level and bi-level branch-and-check algorithms that solve the problem using a hybridization of integer programming and constraint programming. We demonstrate that our approaches outperform an existing time-indexed integer programming model, yielding significant improvements on solution quality. Our methods are competitive with an existing genetic algorithm while providing provable bounds on solution quality. We conduct an investigation into the impact of time discretization on our algorithms, illustrating that our decompositions, unlike the previously proposed integer programming approach, are much less sensitive to time discretization and produce more accurate solutions as a result. Finally, we introduce and investigate benchmark instances with a more diverse case mix. Overall, we conclude that our decompositions are the most appropriate approaches for this multi-level operating room planning and scheduling problem.</description><identifier>ISSN: 0925-5273</identifier><identifier>EISSN: 1873-7579</identifier><identifier>DOI: 10.1016/j.ijpe.2019.07.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Analysis ; Branch-and-check ; Business schools ; Hybrid IP/CP ; Logic-based Benders decomposition ; Medical policy ; Methods ; Multi-level decomposition ; Multi-specialty operating room scheduling</subject><ispartof>International journal of production economics, 2020-02, Vol.220, p.107433, Article 107433</ispartof><rights>2019</rights><rights>COPYRIGHT 2020 Elsevier Science Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-6bf4c4822784eb3590d4e616ab94186cffbb6e746b8bb1e2527a5ff910fceb243</citedby><cites>FETCH-LOGICAL-c364t-6bf4c4822784eb3590d4e616ab94186cffbb6e746b8bb1e2527a5ff910fceb243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpe.2019.07.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Roshanaei, Vahid</creatorcontrib><creatorcontrib>Booth, Kyle E.C.</creatorcontrib><creatorcontrib>Aleman, Dionne M.</creatorcontrib><creatorcontrib>Urbach, David R.</creatorcontrib><creatorcontrib>Beck, J. Christopher</creatorcontrib><title>Branch-and-check methods for multi-level operating room planning and scheduling</title><title>International journal of production economics</title><description>We develop the first exact decomposition approaches for a multi-level operating room planning and scheduling problem that integrates case mix planning, master surgical scheduling, and surgery sequencing in the presence of multiple surgical specialties. Our approaches consist of novel uni-level and bi-level branch-and-check algorithms that solve the problem using a hybridization of integer programming and constraint programming. We demonstrate that our approaches outperform an existing time-indexed integer programming model, yielding significant improvements on solution quality. Our methods are competitive with an existing genetic algorithm while providing provable bounds on solution quality. We conduct an investigation into the impact of time discretization on our algorithms, illustrating that our decompositions, unlike the previously proposed integer programming approach, are much less sensitive to time discretization and produce more accurate solutions as a result. Finally, we introduce and investigate benchmark instances with a more diverse case mix. Overall, we conclude that our decompositions are the most appropriate approaches for this multi-level operating room planning and scheduling problem.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Branch-and-check</subject><subject>Business schools</subject><subject>Hybrid IP/CP</subject><subject>Logic-based Benders decomposition</subject><subject>Medical policy</subject><subject>Methods</subject><subject>Multi-level decomposition</subject><subject>Multi-specialty operating room scheduling</subject><issn>0925-5273</issn><issn>1873-7579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6yyYudgO46dSGxKxUuq1A2sLdsZtw5JXNlpBX9PorJmNbrSPaOZg9AdJTklVDy0uW_3kDNC65zInBBxhha0kgWWpazP0YLUrMQlk8UlukqpJYRIWlULtHmKerA7rIcG2x3Yr6yHcRealLkQs_7QjR53cIQuC3uIevTDNosh9Nm-08Mwp4nM0oQ2h26KN-jC6S7B7d-8Rp8vzx-rN7zevL6vlmtsC8FHLIzjlleMyYqDKcqaNBwEFdrUnFbCOmeMAMmFqYyhwKbLdelcTYmzYBgvrtH9ae9Wd6D8YMMwwve41YeUlFoKyuuK1FxORXYq2hhSiuDUPvpexx9FiZrdqVbN7tTsThGpJncT9HiCYHrh6CGqZD0MFhofwY6qCf4__Bc4Y3iH</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Roshanaei, Vahid</creator><creator>Booth, Kyle E.C.</creator><creator>Aleman, Dionne M.</creator><creator>Urbach, David R.</creator><creator>Beck, J. Christopher</creator><general>Elsevier B.V</general><general>Elsevier Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202002</creationdate><title>Branch-and-check methods for multi-level operating room planning and scheduling</title><author>Roshanaei, Vahid ; Booth, Kyle E.C. ; Aleman, Dionne M. ; Urbach, David R. ; Beck, J. Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-6bf4c4822784eb3590d4e616ab94186cffbb6e746b8bb1e2527a5ff910fceb243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Branch-and-check</topic><topic>Business schools</topic><topic>Hybrid IP/CP</topic><topic>Logic-based Benders decomposition</topic><topic>Medical policy</topic><topic>Methods</topic><topic>Multi-level decomposition</topic><topic>Multi-specialty operating room scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roshanaei, Vahid</creatorcontrib><creatorcontrib>Booth, Kyle E.C.</creatorcontrib><creatorcontrib>Aleman, Dionne M.</creatorcontrib><creatorcontrib>Urbach, David R.</creatorcontrib><creatorcontrib>Beck, J. Christopher</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of production economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roshanaei, Vahid</au><au>Booth, Kyle E.C.</au><au>Aleman, Dionne M.</au><au>Urbach, David R.</au><au>Beck, J. Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Branch-and-check methods for multi-level operating room planning and scheduling</atitle><jtitle>International journal of production economics</jtitle><date>2020-02</date><risdate>2020</risdate><volume>220</volume><spage>107433</spage><pages>107433-</pages><artnum>107433</artnum><issn>0925-5273</issn><eissn>1873-7579</eissn><abstract>We develop the first exact decomposition approaches for a multi-level operating room planning and scheduling problem that integrates case mix planning, master surgical scheduling, and surgery sequencing in the presence of multiple surgical specialties. Our approaches consist of novel uni-level and bi-level branch-and-check algorithms that solve the problem using a hybridization of integer programming and constraint programming. We demonstrate that our approaches outperform an existing time-indexed integer programming model, yielding significant improvements on solution quality. Our methods are competitive with an existing genetic algorithm while providing provable bounds on solution quality. We conduct an investigation into the impact of time discretization on our algorithms, illustrating that our decompositions, unlike the previously proposed integer programming approach, are much less sensitive to time discretization and produce more accurate solutions as a result. Finally, we introduce and investigate benchmark instances with a more diverse case mix. Overall, we conclude that our decompositions are the most appropriate approaches for this multi-level operating room planning and scheduling problem.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ijpe.2019.07.006</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-5273
ispartof International journal of production economics, 2020-02, Vol.220, p.107433, Article 107433
issn 0925-5273
1873-7579
language eng
recordid cdi_gale_incontextgauss__A614980947
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Analysis
Branch-and-check
Business schools
Hybrid IP/CP
Logic-based Benders decomposition
Medical policy
Methods
Multi-level decomposition
Multi-specialty operating room scheduling
title Branch-and-check methods for multi-level operating room planning and scheduling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Branch-and-check%20methods%20for%20multi-level%20operating%20room%20planning%20and%20scheduling&rft.jtitle=International%20journal%20of%20production%20economics&rft.au=Roshanaei,%20Vahid&rft.date=2020-02&rft.volume=220&rft.spage=107433&rft.pages=107433-&rft.artnum=107433&rft.issn=0925-5273&rft.eissn=1873-7579&rft_id=info:doi/10.1016/j.ijpe.2019.07.006&rft_dat=%3Cgale_cross%3EA614980947%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A614980947&rft_els_id=S0925527319302439&rfr_iscdi=true