Network Pricing of Congestion-Free Networks: The Elastic and Linear Demand Case
In this work, we address the problem of maximizing the revenue raised from tolls set on a multicommodity transportation network, taking into account that users are assigned to cheapest paths, and that demand is a linearly decreasing function of total path cost (initial cost of carrying the products...
Gespeichert in:
Veröffentlicht in: | Transportation science 2017-08, Vol.51 (3), p.791-806 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 806 |
---|---|
container_issue | 3 |
container_start_page | 791 |
container_title | Transportation science |
container_volume | 51 |
creator | Kuiteing, Aimé Kamgaing Marcotte, Patrice Savard, Gilles |
description | In this work, we address the problem of maximizing the revenue raised from tolls set on a multicommodity transportation network, taking into account that users are assigned to cheapest paths, and that demand is a linearly decreasing function of total path cost (initial cost of carrying the products plus toll). We propose for its numerical solution three mixed quadratic formulations, either in arc or path flow space. Similar to what was achieved in the fixed demand case, we analyze the structure and properties of the problem, including its theoretical complexity. On the computational side, we analyze the sensitivity of central processing unit time with respect to two key parameters, namely, demand elasticity and percentage of toll arcs. |
doi_str_mv | 10.1287/trsc.2015.0628 |
format | Article |
fullrecord | <record><control><sourceid>gale_jstor</sourceid><recordid>TN_cdi_gale_incontextgauss__A502507598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A502507598</galeid><jstor_id>45154616</jstor_id><sourcerecordid>A502507598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-e89c341d104fed19985f6b889100aa808cdd32fec0ba1100e5a45128e56e81b23</originalsourceid><addsrcrecordid>eNqFktFrFDEQxoMoeFZffQ6IPrlnkt1ks76Vs1XhsD7U55DLzm5z3iY1k0P73zfLFdqDAwkkZPL7JjPDR8hbzpZc6PZTTuiWgnG5ZEroZ2TBpVCVbJr2OVkw1vCKKylfkleIW1awlssFufoB-W9Mv-nP5J0PI40DXcUwAmYfQ3WZAOgDgp_p9Q3Qi50tb47a0NO1D2AT_QLTfFtZhNfkxWB3CG8ezjPy6_LievWtWl99_b46X1dONixXoDtXN7znrBmg512n5aA2WnecMWs1067vazGAYxvLSwykbWTpEqQCzTeiPiPvDnlvU_yzL9WabdynUL40QrWtUrVg7SM12h0YH4aYk3WTR2fOJROStbLThapOUCMESHYXAwy-hI_45Qm-rB4m704KPhwJCpPhXx7tHtEcgx-fgJs9lvli2dCPNxkP_KlCXIqICQZzm_xk053hzMyeMLMnzOwJM3uiCN4fBFvMMT2lRc1aU0YsG8XV40Tm5tKE_8t7D-XUwA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677663207</pqid></control><display><type>article</type><title>Network Pricing of Congestion-Free Networks: The Elastic and Linear Demand Case</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><source>JSTOR</source><creator>Kuiteing, Aimé Kamgaing ; Marcotte, Patrice ; Savard, Gilles</creator><creatorcontrib>Kuiteing, Aimé Kamgaing ; Marcotte, Patrice ; Savard, Gilles</creatorcontrib><description>In this work, we address the problem of maximizing the revenue raised from tolls set on a multicommodity transportation network, taking into account that users are assigned to cheapest paths, and that demand is a linearly decreasing function of total path cost (initial cost of carrying the products plus toll). We propose for its numerical solution three mixed quadratic formulations, either in arc or path flow space. Similar to what was achieved in the fixed demand case, we analyze the structure and properties of the problem, including its theoretical complexity. On the computational side, we analyze the sensitivity of central processing unit time with respect to two key parameters, namely, demand elasticity and percentage of toll arcs.</description><identifier>ISSN: 0041-1655</identifier><identifier>EISSN: 1526-5447</identifier><identifier>DOI: 10.1287/trsc.2015.0628</identifier><language>eng</language><publisher>Baltimore: INFORMS</publisher><subject>Analysis ; bilevel programming ; Central processing units ; CPUs ; Demand ; Demand analysis ; Elasticity (Economics) ; linear demand ; networks ; NP-hard ; Numerical analysis ; Operating costs ; Prices and rates ; pricing ; quadratic programming ; Revenue management ; sensitivity analysis ; Tolls ; Traffic congestion ; Transportation networks ; Transportation services</subject><ispartof>Transportation science, 2017-08, Vol.51 (3), p.791-806</ispartof><rights>Copyright © 2017 Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2017 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-e89c341d104fed19985f6b889100aa808cdd32fec0ba1100e5a45128e56e81b23</citedby><cites>FETCH-LOGICAL-c540t-e89c341d104fed19985f6b889100aa808cdd32fec0ba1100e5a45128e56e81b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45154616$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/trsc.2015.0628$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3692,27924,27925,58017,58250,62616</link.rule.ids></links><search><creatorcontrib>Kuiteing, Aimé Kamgaing</creatorcontrib><creatorcontrib>Marcotte, Patrice</creatorcontrib><creatorcontrib>Savard, Gilles</creatorcontrib><title>Network Pricing of Congestion-Free Networks: The Elastic and Linear Demand Case</title><title>Transportation science</title><description>In this work, we address the problem of maximizing the revenue raised from tolls set on a multicommodity transportation network, taking into account that users are assigned to cheapest paths, and that demand is a linearly decreasing function of total path cost (initial cost of carrying the products plus toll). We propose for its numerical solution three mixed quadratic formulations, either in arc or path flow space. Similar to what was achieved in the fixed demand case, we analyze the structure and properties of the problem, including its theoretical complexity. On the computational side, we analyze the sensitivity of central processing unit time with respect to two key parameters, namely, demand elasticity and percentage of toll arcs.</description><subject>Analysis</subject><subject>bilevel programming</subject><subject>Central processing units</subject><subject>CPUs</subject><subject>Demand</subject><subject>Demand analysis</subject><subject>Elasticity (Economics)</subject><subject>linear demand</subject><subject>networks</subject><subject>NP-hard</subject><subject>Numerical analysis</subject><subject>Operating costs</subject><subject>Prices and rates</subject><subject>pricing</subject><subject>quadratic programming</subject><subject>Revenue management</subject><subject>sensitivity analysis</subject><subject>Tolls</subject><subject>Traffic congestion</subject><subject>Transportation networks</subject><subject>Transportation services</subject><issn>0041-1655</issn><issn>1526-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFktFrFDEQxoMoeFZffQ6IPrlnkt1ks76Vs1XhsD7U55DLzm5z3iY1k0P73zfLFdqDAwkkZPL7JjPDR8hbzpZc6PZTTuiWgnG5ZEroZ2TBpVCVbJr2OVkw1vCKKylfkleIW1awlssFufoB-W9Mv-nP5J0PI40DXcUwAmYfQ3WZAOgDgp_p9Q3Qi50tb47a0NO1D2AT_QLTfFtZhNfkxWB3CG8ezjPy6_LievWtWl99_b46X1dONixXoDtXN7znrBmg512n5aA2WnecMWs1067vazGAYxvLSwykbWTpEqQCzTeiPiPvDnlvU_yzL9WabdynUL40QrWtUrVg7SM12h0YH4aYk3WTR2fOJROStbLThapOUCMESHYXAwy-hI_45Qm-rB4m704KPhwJCpPhXx7tHtEcgx-fgJs9lvli2dCPNxkP_KlCXIqICQZzm_xk053hzMyeMLMnzOwJM3uiCN4fBFvMMT2lRc1aU0YsG8XV40Tm5tKE_8t7D-XUwA0</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Kuiteing, Aimé Kamgaing</creator><creator>Marcotte, Patrice</creator><creator>Savard, Gilles</creator><general>INFORMS</general><general>Transportation Science & Logistics Society of the Institute for Operations Research and Management Sciences</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20170801</creationdate><title>Network Pricing of Congestion-Free Networks: The Elastic and Linear Demand Case</title><author>Kuiteing, Aimé Kamgaing ; Marcotte, Patrice ; Savard, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-e89c341d104fed19985f6b889100aa808cdd32fec0ba1100e5a45128e56e81b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>bilevel programming</topic><topic>Central processing units</topic><topic>CPUs</topic><topic>Demand</topic><topic>Demand analysis</topic><topic>Elasticity (Economics)</topic><topic>linear demand</topic><topic>networks</topic><topic>NP-hard</topic><topic>Numerical analysis</topic><topic>Operating costs</topic><topic>Prices and rates</topic><topic>pricing</topic><topic>quadratic programming</topic><topic>Revenue management</topic><topic>sensitivity analysis</topic><topic>Tolls</topic><topic>Traffic congestion</topic><topic>Transportation networks</topic><topic>Transportation services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuiteing, Aimé Kamgaing</creatorcontrib><creatorcontrib>Marcotte, Patrice</creatorcontrib><creatorcontrib>Savard, Gilles</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Transportation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuiteing, Aimé Kamgaing</au><au>Marcotte, Patrice</au><au>Savard, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Pricing of Congestion-Free Networks: The Elastic and Linear Demand Case</atitle><jtitle>Transportation science</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>51</volume><issue>3</issue><spage>791</spage><epage>806</epage><pages>791-806</pages><issn>0041-1655</issn><eissn>1526-5447</eissn><abstract>In this work, we address the problem of maximizing the revenue raised from tolls set on a multicommodity transportation network, taking into account that users are assigned to cheapest paths, and that demand is a linearly decreasing function of total path cost (initial cost of carrying the products plus toll). We propose for its numerical solution three mixed quadratic formulations, either in arc or path flow space. Similar to what was achieved in the fixed demand case, we analyze the structure and properties of the problem, including its theoretical complexity. On the computational side, we analyze the sensitivity of central processing unit time with respect to two key parameters, namely, demand elasticity and percentage of toll arcs.</abstract><cop>Baltimore</cop><pub>INFORMS</pub><doi>10.1287/trsc.2015.0628</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-1655 |
ispartof | Transportation science, 2017-08, Vol.51 (3), p.791-806 |
issn | 0041-1655 1526-5447 |
language | eng |
recordid | cdi_gale_incontextgauss__A502507598 |
source | Informs; EBSCOhost Business Source Complete; JSTOR |
subjects | Analysis bilevel programming Central processing units CPUs Demand Demand analysis Elasticity (Economics) linear demand networks NP-hard Numerical analysis Operating costs Prices and rates pricing quadratic programming Revenue management sensitivity analysis Tolls Traffic congestion Transportation networks Transportation services |
title | Network Pricing of Congestion-Free Networks: The Elastic and Linear Demand Case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Pricing%20of%20Congestion-Free%20Networks:%20The%20Elastic%20and%20Linear%20Demand%20Case&rft.jtitle=Transportation%20science&rft.au=Kuiteing,%20Aim%C3%A9%20Kamgaing&rft.date=2017-08-01&rft.volume=51&rft.issue=3&rft.spage=791&rft.epage=806&rft.pages=791-806&rft.issn=0041-1655&rft.eissn=1526-5447&rft_id=info:doi/10.1287/trsc.2015.0628&rft_dat=%3Cgale_jstor%3EA502507598%3C/gale_jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677663207&rft_id=info:pmid/&rft_galeid=A502507598&rft_jstor_id=45154616&rfr_iscdi=true |