Network Pricing of Congestion-Free Networks: The Elastic and Linear Demand Case

In this work, we address the problem of maximizing the revenue raised from tolls set on a multicommodity transportation network, taking into account that users are assigned to cheapest paths, and that demand is a linearly decreasing function of total path cost (initial cost of carrying the products...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation science 2017-08, Vol.51 (3), p.791-806
Hauptverfasser: Kuiteing, Aimé Kamgaing, Marcotte, Patrice, Savard, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 806
container_issue 3
container_start_page 791
container_title Transportation science
container_volume 51
creator Kuiteing, Aimé Kamgaing
Marcotte, Patrice
Savard, Gilles
description In this work, we address the problem of maximizing the revenue raised from tolls set on a multicommodity transportation network, taking into account that users are assigned to cheapest paths, and that demand is a linearly decreasing function of total path cost (initial cost of carrying the products plus toll). We propose for its numerical solution three mixed quadratic formulations, either in arc or path flow space. Similar to what was achieved in the fixed demand case, we analyze the structure and properties of the problem, including its theoretical complexity. On the computational side, we analyze the sensitivity of central processing unit time with respect to two key parameters, namely, demand elasticity and percentage of toll arcs.
doi_str_mv 10.1287/trsc.2015.0628
format Article
fullrecord <record><control><sourceid>gale_jstor</sourceid><recordid>TN_cdi_gale_incontextgauss__A502507598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A502507598</galeid><jstor_id>45154616</jstor_id><sourcerecordid>A502507598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-e89c341d104fed19985f6b889100aa808cdd32fec0ba1100e5a45128e56e81b23</originalsourceid><addsrcrecordid>eNqFktFrFDEQxoMoeFZffQ6IPrlnkt1ks76Vs1XhsD7U55DLzm5z3iY1k0P73zfLFdqDAwkkZPL7JjPDR8hbzpZc6PZTTuiWgnG5ZEroZ2TBpVCVbJr2OVkw1vCKKylfkleIW1awlssFufoB-W9Mv-nP5J0PI40DXcUwAmYfQ3WZAOgDgp_p9Q3Qi50tb47a0NO1D2AT_QLTfFtZhNfkxWB3CG8ezjPy6_LievWtWl99_b46X1dONixXoDtXN7znrBmg512n5aA2WnecMWs1067vazGAYxvLSwykbWTpEqQCzTeiPiPvDnlvU_yzL9WabdynUL40QrWtUrVg7SM12h0YH4aYk3WTR2fOJROStbLThapOUCMESHYXAwy-hI_45Qm-rB4m704KPhwJCpPhXx7tHtEcgx-fgJs9lvli2dCPNxkP_KlCXIqICQZzm_xk053hzMyeMLMnzOwJM3uiCN4fBFvMMT2lRc1aU0YsG8XV40Tm5tKE_8t7D-XUwA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677663207</pqid></control><display><type>article</type><title>Network Pricing of Congestion-Free Networks: The Elastic and Linear Demand Case</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><source>JSTOR</source><creator>Kuiteing, Aimé Kamgaing ; Marcotte, Patrice ; Savard, Gilles</creator><creatorcontrib>Kuiteing, Aimé Kamgaing ; Marcotte, Patrice ; Savard, Gilles</creatorcontrib><description>In this work, we address the problem of maximizing the revenue raised from tolls set on a multicommodity transportation network, taking into account that users are assigned to cheapest paths, and that demand is a linearly decreasing function of total path cost (initial cost of carrying the products plus toll). We propose for its numerical solution three mixed quadratic formulations, either in arc or path flow space. Similar to what was achieved in the fixed demand case, we analyze the structure and properties of the problem, including its theoretical complexity. On the computational side, we analyze the sensitivity of central processing unit time with respect to two key parameters, namely, demand elasticity and percentage of toll arcs.</description><identifier>ISSN: 0041-1655</identifier><identifier>EISSN: 1526-5447</identifier><identifier>DOI: 10.1287/trsc.2015.0628</identifier><language>eng</language><publisher>Baltimore: INFORMS</publisher><subject>Analysis ; bilevel programming ; Central processing units ; CPUs ; Demand ; Demand analysis ; Elasticity (Economics) ; linear demand ; networks ; NP-hard ; Numerical analysis ; Operating costs ; Prices and rates ; pricing ; quadratic programming ; Revenue management ; sensitivity analysis ; Tolls ; Traffic congestion ; Transportation networks ; Transportation services</subject><ispartof>Transportation science, 2017-08, Vol.51 (3), p.791-806</ispartof><rights>Copyright © 2017 Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2017 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-e89c341d104fed19985f6b889100aa808cdd32fec0ba1100e5a45128e56e81b23</citedby><cites>FETCH-LOGICAL-c540t-e89c341d104fed19985f6b889100aa808cdd32fec0ba1100e5a45128e56e81b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45154616$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/trsc.2015.0628$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3692,27924,27925,58017,58250,62616</link.rule.ids></links><search><creatorcontrib>Kuiteing, Aimé Kamgaing</creatorcontrib><creatorcontrib>Marcotte, Patrice</creatorcontrib><creatorcontrib>Savard, Gilles</creatorcontrib><title>Network Pricing of Congestion-Free Networks: The Elastic and Linear Demand Case</title><title>Transportation science</title><description>In this work, we address the problem of maximizing the revenue raised from tolls set on a multicommodity transportation network, taking into account that users are assigned to cheapest paths, and that demand is a linearly decreasing function of total path cost (initial cost of carrying the products plus toll). We propose for its numerical solution three mixed quadratic formulations, either in arc or path flow space. Similar to what was achieved in the fixed demand case, we analyze the structure and properties of the problem, including its theoretical complexity. On the computational side, we analyze the sensitivity of central processing unit time with respect to two key parameters, namely, demand elasticity and percentage of toll arcs.</description><subject>Analysis</subject><subject>bilevel programming</subject><subject>Central processing units</subject><subject>CPUs</subject><subject>Demand</subject><subject>Demand analysis</subject><subject>Elasticity (Economics)</subject><subject>linear demand</subject><subject>networks</subject><subject>NP-hard</subject><subject>Numerical analysis</subject><subject>Operating costs</subject><subject>Prices and rates</subject><subject>pricing</subject><subject>quadratic programming</subject><subject>Revenue management</subject><subject>sensitivity analysis</subject><subject>Tolls</subject><subject>Traffic congestion</subject><subject>Transportation networks</subject><subject>Transportation services</subject><issn>0041-1655</issn><issn>1526-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFktFrFDEQxoMoeFZffQ6IPrlnkt1ks76Vs1XhsD7U55DLzm5z3iY1k0P73zfLFdqDAwkkZPL7JjPDR8hbzpZc6PZTTuiWgnG5ZEroZ2TBpVCVbJr2OVkw1vCKKylfkleIW1awlssFufoB-W9Mv-nP5J0PI40DXcUwAmYfQ3WZAOgDgp_p9Q3Qi50tb47a0NO1D2AT_QLTfFtZhNfkxWB3CG8ezjPy6_LievWtWl99_b46X1dONixXoDtXN7znrBmg512n5aA2WnecMWs1067vazGAYxvLSwykbWTpEqQCzTeiPiPvDnlvU_yzL9WabdynUL40QrWtUrVg7SM12h0YH4aYk3WTR2fOJROStbLThapOUCMESHYXAwy-hI_45Qm-rB4m704KPhwJCpPhXx7tHtEcgx-fgJs9lvli2dCPNxkP_KlCXIqICQZzm_xk053hzMyeMLMnzOwJM3uiCN4fBFvMMT2lRc1aU0YsG8XV40Tm5tKE_8t7D-XUwA0</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Kuiteing, Aimé Kamgaing</creator><creator>Marcotte, Patrice</creator><creator>Savard, Gilles</creator><general>INFORMS</general><general>Transportation Science &amp; Logistics Society of the Institute for Operations Research and Management Sciences</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20170801</creationdate><title>Network Pricing of Congestion-Free Networks: The Elastic and Linear Demand Case</title><author>Kuiteing, Aimé Kamgaing ; Marcotte, Patrice ; Savard, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-e89c341d104fed19985f6b889100aa808cdd32fec0ba1100e5a45128e56e81b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>bilevel programming</topic><topic>Central processing units</topic><topic>CPUs</topic><topic>Demand</topic><topic>Demand analysis</topic><topic>Elasticity (Economics)</topic><topic>linear demand</topic><topic>networks</topic><topic>NP-hard</topic><topic>Numerical analysis</topic><topic>Operating costs</topic><topic>Prices and rates</topic><topic>pricing</topic><topic>quadratic programming</topic><topic>Revenue management</topic><topic>sensitivity analysis</topic><topic>Tolls</topic><topic>Traffic congestion</topic><topic>Transportation networks</topic><topic>Transportation services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuiteing, Aimé Kamgaing</creatorcontrib><creatorcontrib>Marcotte, Patrice</creatorcontrib><creatorcontrib>Savard, Gilles</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Transportation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuiteing, Aimé Kamgaing</au><au>Marcotte, Patrice</au><au>Savard, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Pricing of Congestion-Free Networks: The Elastic and Linear Demand Case</atitle><jtitle>Transportation science</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>51</volume><issue>3</issue><spage>791</spage><epage>806</epage><pages>791-806</pages><issn>0041-1655</issn><eissn>1526-5447</eissn><abstract>In this work, we address the problem of maximizing the revenue raised from tolls set on a multicommodity transportation network, taking into account that users are assigned to cheapest paths, and that demand is a linearly decreasing function of total path cost (initial cost of carrying the products plus toll). We propose for its numerical solution three mixed quadratic formulations, either in arc or path flow space. Similar to what was achieved in the fixed demand case, we analyze the structure and properties of the problem, including its theoretical complexity. On the computational side, we analyze the sensitivity of central processing unit time with respect to two key parameters, namely, demand elasticity and percentage of toll arcs.</abstract><cop>Baltimore</cop><pub>INFORMS</pub><doi>10.1287/trsc.2015.0628</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-1655
ispartof Transportation science, 2017-08, Vol.51 (3), p.791-806
issn 0041-1655
1526-5447
language eng
recordid cdi_gale_incontextgauss__A502507598
source Informs; EBSCOhost Business Source Complete; JSTOR
subjects Analysis
bilevel programming
Central processing units
CPUs
Demand
Demand analysis
Elasticity (Economics)
linear demand
networks
NP-hard
Numerical analysis
Operating costs
Prices and rates
pricing
quadratic programming
Revenue management
sensitivity analysis
Tolls
Traffic congestion
Transportation networks
Transportation services
title Network Pricing of Congestion-Free Networks: The Elastic and Linear Demand Case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Pricing%20of%20Congestion-Free%20Networks:%20The%20Elastic%20and%20Linear%20Demand%20Case&rft.jtitle=Transportation%20science&rft.au=Kuiteing,%20Aim%C3%A9%20Kamgaing&rft.date=2017-08-01&rft.volume=51&rft.issue=3&rft.spage=791&rft.epage=806&rft.pages=791-806&rft.issn=0041-1655&rft.eissn=1526-5447&rft_id=info:doi/10.1287/trsc.2015.0628&rft_dat=%3Cgale_jstor%3EA502507598%3C/gale_jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677663207&rft_id=info:pmid/&rft_galeid=A502507598&rft_jstor_id=45154616&rfr_iscdi=true