Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling

We develop and test an integrated forecasting and stochastic programming approach to workforce management in call centers. We first demonstrate that parametric forecasts, discretized using Gaussian quadrature, can be used to drive stochastic programs whose results are stable with relatively small nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manufacturing & service operations management 2015-09, Vol.17 (4), p.571-588
Hauptverfasser: Gans, Noah, Shen, Haipeng, Zhou, Yong-Pin, Korolev, Nikolay, McCord, Alan, Ristock, Herbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 588
container_issue 4
container_start_page 571
container_title Manufacturing & service operations management
container_volume 17
creator Gans, Noah
Shen, Haipeng
Zhou, Yong-Pin
Korolev, Nikolay
McCord, Alan
Ristock, Herbert
description We develop and test an integrated forecasting and stochastic programming approach to workforce management in call centers. We first demonstrate that parametric forecasts, discretized using Gaussian quadrature, can be used to drive stochastic programs whose results are stable with relatively small numbers of scenarios. We then extend our approach to include forecast updates and two-stage stochastic programs with recourse and provide a general modeling framework for which recent, related models are special cases. In our formulations, the inclusion of multiple arrival-rate scenarios allows call centers to meet long-run average quality-of-service targets, and the use of recourse actions helps them to lower long-run average costs. Experiments with two large sets of call-center data highlight the complementary nature of these elements.
doi_str_mv 10.1287/msom.2015.0546
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_incontextgauss__A433588149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A433588149</galeid><sourcerecordid>A433588149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-23f6cede3cda65956e14d26b2f05cd9f1b1a4d194e2481ec8639b8f28aa02fbd3</originalsourceid><addsrcrecordid>eNqF0t1r1TAUAPAiCs7pq88FwSd7TdIkN30cF6fChoMpPklIk5PezLaZOSnM_950E-aFCxLI5-8kJ3Cq6jUlG8rU9v2EcdowQsWGCC6fVCdUMNkI3qmn9_O24ZLy59ULxBtCCFWEnVQ_rkwyE-QUbH0eE1iDOcxDbWZXX-do9-va1lcpDsVN69FldDBi7WOqd2Ycmx3MGVL9PaafZc9CfW334Jax2JfVM29GhFd_x9Pq2_mHr7tPzcWXj593ZxeNFZzlhrVeWnDQWmek6IQEyh2TPfNEWNd52lPDHe04MK4oWCXbrleeKWMI871rT6s3D_fepvhrAcz6Ji5pLk9qJrdbKRlt6aMazAg6zD7mZOwU0Ooz3rZCKcq7opojaoAZkhnjDD6U7QO_OeJLczAFezTg7UFAMRnu8mAWRH0I3_0D-wXDDFg6DMM-44M_lohNETGB17cpTCb91pTotUL0WiF6rRC9VsjjT9ek04T_838Av7S8Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677662131</pqid></control><display><type>article</type><title>Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><creator>Gans, Noah ; Shen, Haipeng ; Zhou, Yong-Pin ; Korolev, Nikolay ; McCord, Alan ; Ristock, Herbert</creator><creatorcontrib>Gans, Noah ; Shen, Haipeng ; Zhou, Yong-Pin ; Korolev, Nikolay ; McCord, Alan ; Ristock, Herbert</creatorcontrib><description>We develop and test an integrated forecasting and stochastic programming approach to workforce management in call centers. We first demonstrate that parametric forecasts, discretized using Gaussian quadrature, can be used to drive stochastic programs whose results are stable with relatively small numbers of scenarios. We then extend our approach to include forecast updates and two-stage stochastic programs with recourse and provide a general modeling framework for which recent, related models are special cases. In our formulations, the inclusion of multiple arrival-rate scenarios allows call centers to meet long-run average quality-of-service targets, and the use of recourse actions helps them to lower long-run average costs. Experiments with two large sets of call-center data highlight the complementary nature of these elements.</description><identifier>ISSN: 1523-4614</identifier><identifier>EISSN: 1526-5498</identifier><identifier>DOI: 10.1287/msom.2015.0546</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; Business forecasts ; Call centers ; call-center management ; distributional forecast updating ; Evaluation ; Forecasting ; Forecasts and trends ; Integer programming ; Labor supply ; Management ; Production planning ; production planning and scheduling ; service operations ; Stochastic models ; Stochastic programming ; stochastic programming with recourse</subject><ispartof>Manufacturing &amp; service operations management, 2015-09, Vol.17 (4), p.571-588</ispartof><rights>COPYRIGHT 2015 Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2015 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Fall 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-23f6cede3cda65956e14d26b2f05cd9f1b1a4d194e2481ec8639b8f28aa02fbd3</citedby><cites>FETCH-LOGICAL-c542t-23f6cede3cda65956e14d26b2f05cd9f1b1a4d194e2481ec8639b8f28aa02fbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/msom.2015.0546$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Gans, Noah</creatorcontrib><creatorcontrib>Shen, Haipeng</creatorcontrib><creatorcontrib>Zhou, Yong-Pin</creatorcontrib><creatorcontrib>Korolev, Nikolay</creatorcontrib><creatorcontrib>McCord, Alan</creatorcontrib><creatorcontrib>Ristock, Herbert</creatorcontrib><title>Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling</title><title>Manufacturing &amp; service operations management</title><description>We develop and test an integrated forecasting and stochastic programming approach to workforce management in call centers. We first demonstrate that parametric forecasts, discretized using Gaussian quadrature, can be used to drive stochastic programs whose results are stable with relatively small numbers of scenarios. We then extend our approach to include forecast updates and two-stage stochastic programs with recourse and provide a general modeling framework for which recent, related models are special cases. In our formulations, the inclusion of multiple arrival-rate scenarios allows call centers to meet long-run average quality-of-service targets, and the use of recourse actions helps them to lower long-run average costs. Experiments with two large sets of call-center data highlight the complementary nature of these elements.</description><subject>Analysis</subject><subject>Business forecasts</subject><subject>Call centers</subject><subject>call-center management</subject><subject>distributional forecast updating</subject><subject>Evaluation</subject><subject>Forecasting</subject><subject>Forecasts and trends</subject><subject>Integer programming</subject><subject>Labor supply</subject><subject>Management</subject><subject>Production planning</subject><subject>production planning and scheduling</subject><subject>service operations</subject><subject>Stochastic models</subject><subject>Stochastic programming</subject><subject>stochastic programming with recourse</subject><issn>1523-4614</issn><issn>1526-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqF0t1r1TAUAPAiCs7pq88FwSd7TdIkN30cF6fChoMpPklIk5PezLaZOSnM_950E-aFCxLI5-8kJ3Cq6jUlG8rU9v2EcdowQsWGCC6fVCdUMNkI3qmn9_O24ZLy59ULxBtCCFWEnVQ_rkwyE-QUbH0eE1iDOcxDbWZXX-do9-va1lcpDsVN69FldDBi7WOqd2Ycmx3MGVL9PaafZc9CfW334Jax2JfVM29GhFd_x9Pq2_mHr7tPzcWXj593ZxeNFZzlhrVeWnDQWmek6IQEyh2TPfNEWNd52lPDHe04MK4oWCXbrleeKWMI871rT6s3D_fepvhrAcz6Ji5pLk9qJrdbKRlt6aMazAg6zD7mZOwU0Ooz3rZCKcq7opojaoAZkhnjDD6U7QO_OeJLczAFezTg7UFAMRnu8mAWRH0I3_0D-wXDDFg6DMM-44M_lohNETGB17cpTCb91pTotUL0WiF6rRC9VsjjT9ek04T_838Av7S8Hw</recordid><startdate>20150922</startdate><enddate>20150922</enddate><creator>Gans, Noah</creator><creator>Shen, Haipeng</creator><creator>Zhou, Yong-Pin</creator><creator>Korolev, Nikolay</creator><creator>McCord, Alan</creator><creator>Ristock, Herbert</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope></search><sort><creationdate>20150922</creationdate><title>Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling</title><author>Gans, Noah ; Shen, Haipeng ; Zhou, Yong-Pin ; Korolev, Nikolay ; McCord, Alan ; Ristock, Herbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-23f6cede3cda65956e14d26b2f05cd9f1b1a4d194e2481ec8639b8f28aa02fbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Business forecasts</topic><topic>Call centers</topic><topic>call-center management</topic><topic>distributional forecast updating</topic><topic>Evaluation</topic><topic>Forecasting</topic><topic>Forecasts and trends</topic><topic>Integer programming</topic><topic>Labor supply</topic><topic>Management</topic><topic>Production planning</topic><topic>production planning and scheduling</topic><topic>service operations</topic><topic>Stochastic models</topic><topic>Stochastic programming</topic><topic>stochastic programming with recourse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gans, Noah</creatorcontrib><creatorcontrib>Shen, Haipeng</creatorcontrib><creatorcontrib>Zhou, Yong-Pin</creatorcontrib><creatorcontrib>Korolev, Nikolay</creatorcontrib><creatorcontrib>McCord, Alan</creatorcontrib><creatorcontrib>Ristock, Herbert</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><jtitle>Manufacturing &amp; service operations management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gans, Noah</au><au>Shen, Haipeng</au><au>Zhou, Yong-Pin</au><au>Korolev, Nikolay</au><au>McCord, Alan</au><au>Ristock, Herbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling</atitle><jtitle>Manufacturing &amp; service operations management</jtitle><date>2015-09-22</date><risdate>2015</risdate><volume>17</volume><issue>4</issue><spage>571</spage><epage>588</epage><pages>571-588</pages><issn>1523-4614</issn><eissn>1526-5498</eissn><abstract>We develop and test an integrated forecasting and stochastic programming approach to workforce management in call centers. We first demonstrate that parametric forecasts, discretized using Gaussian quadrature, can be used to drive stochastic programs whose results are stable with relatively small numbers of scenarios. We then extend our approach to include forecast updates and two-stage stochastic programs with recourse and provide a general modeling framework for which recent, related models are special cases. In our formulations, the inclusion of multiple arrival-rate scenarios allows call centers to meet long-run average quality-of-service targets, and the use of recourse actions helps them to lower long-run average costs. Experiments with two large sets of call-center data highlight the complementary nature of these elements.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/msom.2015.0546</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1523-4614
ispartof Manufacturing & service operations management, 2015-09, Vol.17 (4), p.571-588
issn 1523-4614
1526-5498
language eng
recordid cdi_gale_incontextgauss__A433588149
source Informs; EBSCOhost Business Source Complete
subjects Analysis
Business forecasts
Call centers
call-center management
distributional forecast updating
Evaluation
Forecasting
Forecasts and trends
Integer programming
Labor supply
Management
Production planning
production planning and scheduling
service operations
Stochastic models
Stochastic programming
stochastic programming with recourse
title Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20Forecasting%20and%20Stochastic%20Programming%20Models%20for%20Call-Center%20Workforce%20Scheduling&rft.jtitle=Manufacturing%20&%20service%20operations%20management&rft.au=Gans,%20Noah&rft.date=2015-09-22&rft.volume=17&rft.issue=4&rft.spage=571&rft.epage=588&rft.pages=571-588&rft.issn=1523-4614&rft.eissn=1526-5498&rft_id=info:doi/10.1287/msom.2015.0546&rft_dat=%3Cgale_proqu%3EA433588149%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677662131&rft_id=info:pmid/&rft_galeid=A433588149&rfr_iscdi=true