Improving long short-term memory networks for arbitrage spread forecasting: integrating cuckoo and zebra algorithms in chaotic mapping space for enhanced accuracy
Long short-term memory (LSTM) networks, widely used for financial time series forecasting, face challenges in arbitrage spread prediction, especially in hyperparameter tuning for large datasets. These issues affect model complexity and adaptability to market dynamics. Existing heuristic algorithms f...
Gespeichert in:
Veröffentlicht in: | PeerJ. Computer science 2024-12, Vol.10, p.e2552 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | e2552 |
container_title | PeerJ. Computer science |
container_volume | 10 |
creator | Zhu, Mingfu Liu, Yaxing Qin, Panke Ding, Yongjie Cai, Zhongqi Gao, Zhenlun Ye, Bo Qi, Haoran Cheng, Shenjie Zeng, Zeliang |
description | Long short-term memory (LSTM) networks, widely used for financial time series forecasting, face challenges in arbitrage spread prediction, especially in hyperparameter tuning for large datasets. These issues affect model complexity and adaptability to market dynamics. Existing heuristic algorithms for LSTM often struggle to capture the complex dynamics of futures spread data, limiting prediction accuracy. We propose an integrated Cuckoo and Zebra Algorithms-optimised LSTM (ICS-LSTM) network for arbitrage spread prediction. This method replaces the Lévy flight in the Cuckoo algorithm with the Zebra algorithm search, improving convergence speed and solution optimization. Experimental results showed a mean absolute percentage error (MAPE) of 0.011, mean square error (MSE) of 3.326, mean absolute error (MAE) of 1.267, and coefficient of determination (R2) of 0.996. The proposed model improved performance by reducing MAPE by 8.3-50.0%, MSE by 10.2-77.8%, and MAE by 9.3-63.0% compared to existing methods. These improvements translate to more accurate spread predictions, enhancing arbitrage opportunities and trading strategy profitability. |
doi_str_mv | 10.7717/peerj-cs.2552 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A819651378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819651378</galeid><doaj_id>oai_doaj_org_article_8539ae7f108a43ac9b3b977d0a22169e</doaj_id><sourcerecordid>A819651378</sourcerecordid><originalsourceid>FETCH-LOGICAL-d1398-e3b0500ddf77ec1e4bae97033a5d56092138a37aba79437cbbf6a65b125b0d623</originalsourceid><addsrcrecordid>eNpVkE1v3CAQhq2olRqlOfbONQdvwSzG9BZF_VgpUqR-nK0Bxl42a2MNbNvNz-kvDZv0kAzSDPPqmRc0VfVB8JXWQn9cEGlXu7RqlGrOqvNG6rZWxjRvXtzfVZcp7TjnQokS5rz6t5kWir_DPLJ9LCltI-U6I01swinSkc2Y_0S6T2yIxIBsyAQjsrQQgj-J6CDlYvCJhTnjSHBqmDu4-xgZzJ49oCVgsB8jhbydUuGY20LMwbEJluWEpwUcPj2B8xZmh56BcwcCd3xfvR1gn_Dyf72ofn35_PPmW31793Vzc31beyFNV6O0XHHu_aA1OoFrC2g0lxKUVy03jZAdSA0WtFlL7awdWmiVFY2y3LeNvKg2z74-wq5fKExAxz5C6J-ESGMPVP68x75T0gDqQfAO1hKcsdIarT2HphGtweK1evYaoeBhHmLZmivH4xRcnHEIRb_uhGmVkLorA1evBgqT8W8e4ZBSv_nx_SX7CBWRnLQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving long short-term memory networks for arbitrage spread forecasting: integrating cuckoo and zebra algorithms in chaotic mapping space for enhanced accuracy</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Zhu, Mingfu ; Liu, Yaxing ; Qin, Panke ; Ding, Yongjie ; Cai, Zhongqi ; Gao, Zhenlun ; Ye, Bo ; Qi, Haoran ; Cheng, Shenjie ; Zeng, Zeliang</creator><creatorcontrib>Zhu, Mingfu ; Liu, Yaxing ; Qin, Panke ; Ding, Yongjie ; Cai, Zhongqi ; Gao, Zhenlun ; Ye, Bo ; Qi, Haoran ; Cheng, Shenjie ; Zeng, Zeliang</creatorcontrib><description>Long short-term memory (LSTM) networks, widely used for financial time series forecasting, face challenges in arbitrage spread prediction, especially in hyperparameter tuning for large datasets. These issues affect model complexity and adaptability to market dynamics. Existing heuristic algorithms for LSTM often struggle to capture the complex dynamics of futures spread data, limiting prediction accuracy. We propose an integrated Cuckoo and Zebra Algorithms-optimised LSTM (ICS-LSTM) network for arbitrage spread prediction. This method replaces the Lévy flight in the Cuckoo algorithm with the Zebra algorithm search, improving convergence speed and solution optimization. Experimental results showed a mean absolute percentage error (MAPE) of 0.011, mean square error (MSE) of 3.326, mean absolute error (MAE) of 1.267, and coefficient of determination (R2) of 0.996. The proposed model improved performance by reducing MAPE by 8.3-50.0%, MSE by 10.2-77.8%, and MAE by 9.3-63.0% compared to existing methods. These improvements translate to more accurate spread predictions, enhancing arbitrage opportunities and trading strategy profitability.</description><identifier>ISSN: 2376-5992</identifier><identifier>EISSN: 2376-5992</identifier><identifier>DOI: 10.7717/peerj-cs.2552</identifier><language>eng</language><publisher>PeerJ. Ltd</publisher><subject>Algorithms ; Arbitrage spread forecasting ; Computational linguistics ; Cuckoo algorithm ; Economic forecasting ; Forecasts and trends ; Hyperparameter setting ; Language processing ; LSTM networks ; Natural language interfaces ; Zebra algorithm</subject><ispartof>PeerJ. Computer science, 2024-12, Vol.10, p.e2552</ispartof><rights>COPYRIGHT 2024 PeerJ. Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Mingfu</creatorcontrib><creatorcontrib>Liu, Yaxing</creatorcontrib><creatorcontrib>Qin, Panke</creatorcontrib><creatorcontrib>Ding, Yongjie</creatorcontrib><creatorcontrib>Cai, Zhongqi</creatorcontrib><creatorcontrib>Gao, Zhenlun</creatorcontrib><creatorcontrib>Ye, Bo</creatorcontrib><creatorcontrib>Qi, Haoran</creatorcontrib><creatorcontrib>Cheng, Shenjie</creatorcontrib><creatorcontrib>Zeng, Zeliang</creatorcontrib><title>Improving long short-term memory networks for arbitrage spread forecasting: integrating cuckoo and zebra algorithms in chaotic mapping space for enhanced accuracy</title><title>PeerJ. Computer science</title><description>Long short-term memory (LSTM) networks, widely used for financial time series forecasting, face challenges in arbitrage spread prediction, especially in hyperparameter tuning for large datasets. These issues affect model complexity and adaptability to market dynamics. Existing heuristic algorithms for LSTM often struggle to capture the complex dynamics of futures spread data, limiting prediction accuracy. We propose an integrated Cuckoo and Zebra Algorithms-optimised LSTM (ICS-LSTM) network for arbitrage spread prediction. This method replaces the Lévy flight in the Cuckoo algorithm with the Zebra algorithm search, improving convergence speed and solution optimization. Experimental results showed a mean absolute percentage error (MAPE) of 0.011, mean square error (MSE) of 3.326, mean absolute error (MAE) of 1.267, and coefficient of determination (R2) of 0.996. The proposed model improved performance by reducing MAPE by 8.3-50.0%, MSE by 10.2-77.8%, and MAE by 9.3-63.0% compared to existing methods. These improvements translate to more accurate spread predictions, enhancing arbitrage opportunities and trading strategy profitability.</description><subject>Algorithms</subject><subject>Arbitrage spread forecasting</subject><subject>Computational linguistics</subject><subject>Cuckoo algorithm</subject><subject>Economic forecasting</subject><subject>Forecasts and trends</subject><subject>Hyperparameter setting</subject><subject>Language processing</subject><subject>LSTM networks</subject><subject>Natural language interfaces</subject><subject>Zebra algorithm</subject><issn>2376-5992</issn><issn>2376-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkE1v3CAQhq2olRqlOfbONQdvwSzG9BZF_VgpUqR-nK0Bxl42a2MNbNvNz-kvDZv0kAzSDPPqmRc0VfVB8JXWQn9cEGlXu7RqlGrOqvNG6rZWxjRvXtzfVZcp7TjnQokS5rz6t5kWir_DPLJ9LCltI-U6I01swinSkc2Y_0S6T2yIxIBsyAQjsrQQgj-J6CDlYvCJhTnjSHBqmDu4-xgZzJ49oCVgsB8jhbydUuGY20LMwbEJluWEpwUcPj2B8xZmh56BcwcCd3xfvR1gn_Dyf72ofn35_PPmW31793Vzc31beyFNV6O0XHHu_aA1OoFrC2g0lxKUVy03jZAdSA0WtFlL7awdWmiVFY2y3LeNvKg2z74-wq5fKExAxz5C6J-ESGMPVP68x75T0gDqQfAO1hKcsdIarT2HphGtweK1evYaoeBhHmLZmivH4xRcnHEIRb_uhGmVkLorA1evBgqT8W8e4ZBSv_nx_SX7CBWRnLQ</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Zhu, Mingfu</creator><creator>Liu, Yaxing</creator><creator>Qin, Panke</creator><creator>Ding, Yongjie</creator><creator>Cai, Zhongqi</creator><creator>Gao, Zhenlun</creator><creator>Ye, Bo</creator><creator>Qi, Haoran</creator><creator>Cheng, Shenjie</creator><creator>Zeng, Zeliang</creator><general>PeerJ. Ltd</general><general>PeerJ Inc</general><scope>ISR</scope><scope>DOA</scope></search><sort><creationdate>20241212</creationdate><title>Improving long short-term memory networks for arbitrage spread forecasting: integrating cuckoo and zebra algorithms in chaotic mapping space for enhanced accuracy</title><author>Zhu, Mingfu ; Liu, Yaxing ; Qin, Panke ; Ding, Yongjie ; Cai, Zhongqi ; Gao, Zhenlun ; Ye, Bo ; Qi, Haoran ; Cheng, Shenjie ; Zeng, Zeliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d1398-e3b0500ddf77ec1e4bae97033a5d56092138a37aba79437cbbf6a65b125b0d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Arbitrage spread forecasting</topic><topic>Computational linguistics</topic><topic>Cuckoo algorithm</topic><topic>Economic forecasting</topic><topic>Forecasts and trends</topic><topic>Hyperparameter setting</topic><topic>Language processing</topic><topic>LSTM networks</topic><topic>Natural language interfaces</topic><topic>Zebra algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Mingfu</creatorcontrib><creatorcontrib>Liu, Yaxing</creatorcontrib><creatorcontrib>Qin, Panke</creatorcontrib><creatorcontrib>Ding, Yongjie</creatorcontrib><creatorcontrib>Cai, Zhongqi</creatorcontrib><creatorcontrib>Gao, Zhenlun</creatorcontrib><creatorcontrib>Ye, Bo</creatorcontrib><creatorcontrib>Qi, Haoran</creatorcontrib><creatorcontrib>Cheng, Shenjie</creatorcontrib><creatorcontrib>Zeng, Zeliang</creatorcontrib><collection>Gale In Context: Science</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ. Computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Mingfu</au><au>Liu, Yaxing</au><au>Qin, Panke</au><au>Ding, Yongjie</au><au>Cai, Zhongqi</au><au>Gao, Zhenlun</au><au>Ye, Bo</au><au>Qi, Haoran</au><au>Cheng, Shenjie</au><au>Zeng, Zeliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving long short-term memory networks for arbitrage spread forecasting: integrating cuckoo and zebra algorithms in chaotic mapping space for enhanced accuracy</atitle><jtitle>PeerJ. Computer science</jtitle><date>2024-12-12</date><risdate>2024</risdate><volume>10</volume><spage>e2552</spage><pages>e2552-</pages><issn>2376-5992</issn><eissn>2376-5992</eissn><abstract>Long short-term memory (LSTM) networks, widely used for financial time series forecasting, face challenges in arbitrage spread prediction, especially in hyperparameter tuning for large datasets. These issues affect model complexity and adaptability to market dynamics. Existing heuristic algorithms for LSTM often struggle to capture the complex dynamics of futures spread data, limiting prediction accuracy. We propose an integrated Cuckoo and Zebra Algorithms-optimised LSTM (ICS-LSTM) network for arbitrage spread prediction. This method replaces the Lévy flight in the Cuckoo algorithm with the Zebra algorithm search, improving convergence speed and solution optimization. Experimental results showed a mean absolute percentage error (MAPE) of 0.011, mean square error (MSE) of 3.326, mean absolute error (MAE) of 1.267, and coefficient of determination (R2) of 0.996. The proposed model improved performance by reducing MAPE by 8.3-50.0%, MSE by 10.2-77.8%, and MAE by 9.3-63.0% compared to existing methods. These improvements translate to more accurate spread predictions, enhancing arbitrage opportunities and trading strategy profitability.</abstract><pub>PeerJ. Ltd</pub><doi>10.7717/peerj-cs.2552</doi><tpages>e2552</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2376-5992 |
ispartof | PeerJ. Computer science, 2024-12, Vol.10, p.e2552 |
issn | 2376-5992 2376-5992 |
language | eng |
recordid | cdi_gale_incontextgauss_ISR_A819651378 |
source | DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Algorithms Arbitrage spread forecasting Computational linguistics Cuckoo algorithm Economic forecasting Forecasts and trends Hyperparameter setting Language processing LSTM networks Natural language interfaces Zebra algorithm |
title | Improving long short-term memory networks for arbitrage spread forecasting: integrating cuckoo and zebra algorithms in chaotic mapping space for enhanced accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20long%20short-term%20memory%20networks%20for%20arbitrage%20spread%20forecasting:%20integrating%20cuckoo%20and%20zebra%20algorithms%20in%20chaotic%20mapping%20space%20for%20enhanced%20accuracy&rft.jtitle=PeerJ.%20Computer%20science&rft.au=Zhu,%20Mingfu&rft.date=2024-12-12&rft.volume=10&rft.spage=e2552&rft.pages=e2552-&rft.issn=2376-5992&rft.eissn=2376-5992&rft_id=info:doi/10.7717/peerj-cs.2552&rft_dat=%3Cgale_doaj_%3EA819651378%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A819651378&rft_doaj_id=oai_doaj_org_article_8539ae7f108a43ac9b3b977d0a22169e&rfr_iscdi=true |