Improving long short-term memory networks for arbitrage spread forecasting: integrating cuckoo and zebra algorithms in chaotic mapping space for enhanced accuracy

Long short-term memory (LSTM) networks, widely used for financial time series forecasting, face challenges in arbitrage spread prediction, especially in hyperparameter tuning for large datasets. These issues affect model complexity and adaptability to market dynamics. Existing heuristic algorithms f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science 2024-12, Vol.10, p.e2552
Hauptverfasser: Zhu, Mingfu, Liu, Yaxing, Qin, Panke, Ding, Yongjie, Cai, Zhongqi, Gao, Zhenlun, Ye, Bo, Qi, Haoran, Cheng, Shenjie, Zeng, Zeliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e2552
container_title PeerJ. Computer science
container_volume 10
creator Zhu, Mingfu
Liu, Yaxing
Qin, Panke
Ding, Yongjie
Cai, Zhongqi
Gao, Zhenlun
Ye, Bo
Qi, Haoran
Cheng, Shenjie
Zeng, Zeliang
description Long short-term memory (LSTM) networks, widely used for financial time series forecasting, face challenges in arbitrage spread prediction, especially in hyperparameter tuning for large datasets. These issues affect model complexity and adaptability to market dynamics. Existing heuristic algorithms for LSTM often struggle to capture the complex dynamics of futures spread data, limiting prediction accuracy. We propose an integrated Cuckoo and Zebra Algorithms-optimised LSTM (ICS-LSTM) network for arbitrage spread prediction. This method replaces the Lévy flight in the Cuckoo algorithm with the Zebra algorithm search, improving convergence speed and solution optimization. Experimental results showed a mean absolute percentage error (MAPE) of 0.011, mean square error (MSE) of 3.326, mean absolute error (MAE) of 1.267, and coefficient of determination (R2) of 0.996. The proposed model improved performance by reducing MAPE by 8.3-50.0%, MSE by 10.2-77.8%, and MAE by 9.3-63.0% compared to existing methods. These improvements translate to more accurate spread predictions, enhancing arbitrage opportunities and trading strategy profitability.
doi_str_mv 10.7717/peerj-cs.2552
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A819651378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819651378</galeid><doaj_id>oai_doaj_org_article_8539ae7f108a43ac9b3b977d0a22169e</doaj_id><sourcerecordid>A819651378</sourcerecordid><originalsourceid>FETCH-LOGICAL-d1398-e3b0500ddf77ec1e4bae97033a5d56092138a37aba79437cbbf6a65b125b0d623</originalsourceid><addsrcrecordid>eNpVkE1v3CAQhq2olRqlOfbONQdvwSzG9BZF_VgpUqR-nK0Bxl42a2MNbNvNz-kvDZv0kAzSDPPqmRc0VfVB8JXWQn9cEGlXu7RqlGrOqvNG6rZWxjRvXtzfVZcp7TjnQokS5rz6t5kWir_DPLJ9LCltI-U6I01swinSkc2Y_0S6T2yIxIBsyAQjsrQQgj-J6CDlYvCJhTnjSHBqmDu4-xgZzJ49oCVgsB8jhbydUuGY20LMwbEJluWEpwUcPj2B8xZmh56BcwcCd3xfvR1gn_Dyf72ofn35_PPmW31793Vzc31beyFNV6O0XHHu_aA1OoFrC2g0lxKUVy03jZAdSA0WtFlL7awdWmiVFY2y3LeNvKg2z74-wq5fKExAxz5C6J-ESGMPVP68x75T0gDqQfAO1hKcsdIarT2HphGtweK1evYaoeBhHmLZmivH4xRcnHEIRb_uhGmVkLorA1evBgqT8W8e4ZBSv_nx_SX7CBWRnLQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving long short-term memory networks for arbitrage spread forecasting: integrating cuckoo and zebra algorithms in chaotic mapping space for enhanced accuracy</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Zhu, Mingfu ; Liu, Yaxing ; Qin, Panke ; Ding, Yongjie ; Cai, Zhongqi ; Gao, Zhenlun ; Ye, Bo ; Qi, Haoran ; Cheng, Shenjie ; Zeng, Zeliang</creator><creatorcontrib>Zhu, Mingfu ; Liu, Yaxing ; Qin, Panke ; Ding, Yongjie ; Cai, Zhongqi ; Gao, Zhenlun ; Ye, Bo ; Qi, Haoran ; Cheng, Shenjie ; Zeng, Zeliang</creatorcontrib><description>Long short-term memory (LSTM) networks, widely used for financial time series forecasting, face challenges in arbitrage spread prediction, especially in hyperparameter tuning for large datasets. These issues affect model complexity and adaptability to market dynamics. Existing heuristic algorithms for LSTM often struggle to capture the complex dynamics of futures spread data, limiting prediction accuracy. We propose an integrated Cuckoo and Zebra Algorithms-optimised LSTM (ICS-LSTM) network for arbitrage spread prediction. This method replaces the Lévy flight in the Cuckoo algorithm with the Zebra algorithm search, improving convergence speed and solution optimization. Experimental results showed a mean absolute percentage error (MAPE) of 0.011, mean square error (MSE) of 3.326, mean absolute error (MAE) of 1.267, and coefficient of determination (R2) of 0.996. The proposed model improved performance by reducing MAPE by 8.3-50.0%, MSE by 10.2-77.8%, and MAE by 9.3-63.0% compared to existing methods. These improvements translate to more accurate spread predictions, enhancing arbitrage opportunities and trading strategy profitability.</description><identifier>ISSN: 2376-5992</identifier><identifier>EISSN: 2376-5992</identifier><identifier>DOI: 10.7717/peerj-cs.2552</identifier><language>eng</language><publisher>PeerJ. Ltd</publisher><subject>Algorithms ; Arbitrage spread forecasting ; Computational linguistics ; Cuckoo algorithm ; Economic forecasting ; Forecasts and trends ; Hyperparameter setting ; Language processing ; LSTM networks ; Natural language interfaces ; Zebra algorithm</subject><ispartof>PeerJ. Computer science, 2024-12, Vol.10, p.e2552</ispartof><rights>COPYRIGHT 2024 PeerJ. Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Mingfu</creatorcontrib><creatorcontrib>Liu, Yaxing</creatorcontrib><creatorcontrib>Qin, Panke</creatorcontrib><creatorcontrib>Ding, Yongjie</creatorcontrib><creatorcontrib>Cai, Zhongqi</creatorcontrib><creatorcontrib>Gao, Zhenlun</creatorcontrib><creatorcontrib>Ye, Bo</creatorcontrib><creatorcontrib>Qi, Haoran</creatorcontrib><creatorcontrib>Cheng, Shenjie</creatorcontrib><creatorcontrib>Zeng, Zeliang</creatorcontrib><title>Improving long short-term memory networks for arbitrage spread forecasting: integrating cuckoo and zebra algorithms in chaotic mapping space for enhanced accuracy</title><title>PeerJ. Computer science</title><description>Long short-term memory (LSTM) networks, widely used for financial time series forecasting, face challenges in arbitrage spread prediction, especially in hyperparameter tuning for large datasets. These issues affect model complexity and adaptability to market dynamics. Existing heuristic algorithms for LSTM often struggle to capture the complex dynamics of futures spread data, limiting prediction accuracy. We propose an integrated Cuckoo and Zebra Algorithms-optimised LSTM (ICS-LSTM) network for arbitrage spread prediction. This method replaces the Lévy flight in the Cuckoo algorithm with the Zebra algorithm search, improving convergence speed and solution optimization. Experimental results showed a mean absolute percentage error (MAPE) of 0.011, mean square error (MSE) of 3.326, mean absolute error (MAE) of 1.267, and coefficient of determination (R2) of 0.996. The proposed model improved performance by reducing MAPE by 8.3-50.0%, MSE by 10.2-77.8%, and MAE by 9.3-63.0% compared to existing methods. These improvements translate to more accurate spread predictions, enhancing arbitrage opportunities and trading strategy profitability.</description><subject>Algorithms</subject><subject>Arbitrage spread forecasting</subject><subject>Computational linguistics</subject><subject>Cuckoo algorithm</subject><subject>Economic forecasting</subject><subject>Forecasts and trends</subject><subject>Hyperparameter setting</subject><subject>Language processing</subject><subject>LSTM networks</subject><subject>Natural language interfaces</subject><subject>Zebra algorithm</subject><issn>2376-5992</issn><issn>2376-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkE1v3CAQhq2olRqlOfbONQdvwSzG9BZF_VgpUqR-nK0Bxl42a2MNbNvNz-kvDZv0kAzSDPPqmRc0VfVB8JXWQn9cEGlXu7RqlGrOqvNG6rZWxjRvXtzfVZcp7TjnQokS5rz6t5kWir_DPLJ9LCltI-U6I01swinSkc2Y_0S6T2yIxIBsyAQjsrQQgj-J6CDlYvCJhTnjSHBqmDu4-xgZzJ49oCVgsB8jhbydUuGY20LMwbEJluWEpwUcPj2B8xZmh56BcwcCd3xfvR1gn_Dyf72ofn35_PPmW31793Vzc31beyFNV6O0XHHu_aA1OoFrC2g0lxKUVy03jZAdSA0WtFlL7awdWmiVFY2y3LeNvKg2z74-wq5fKExAxz5C6J-ESGMPVP68x75T0gDqQfAO1hKcsdIarT2HphGtweK1evYaoeBhHmLZmivH4xRcnHEIRb_uhGmVkLorA1evBgqT8W8e4ZBSv_nx_SX7CBWRnLQ</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Zhu, Mingfu</creator><creator>Liu, Yaxing</creator><creator>Qin, Panke</creator><creator>Ding, Yongjie</creator><creator>Cai, Zhongqi</creator><creator>Gao, Zhenlun</creator><creator>Ye, Bo</creator><creator>Qi, Haoran</creator><creator>Cheng, Shenjie</creator><creator>Zeng, Zeliang</creator><general>PeerJ. Ltd</general><general>PeerJ Inc</general><scope>ISR</scope><scope>DOA</scope></search><sort><creationdate>20241212</creationdate><title>Improving long short-term memory networks for arbitrage spread forecasting: integrating cuckoo and zebra algorithms in chaotic mapping space for enhanced accuracy</title><author>Zhu, Mingfu ; Liu, Yaxing ; Qin, Panke ; Ding, Yongjie ; Cai, Zhongqi ; Gao, Zhenlun ; Ye, Bo ; Qi, Haoran ; Cheng, Shenjie ; Zeng, Zeliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d1398-e3b0500ddf77ec1e4bae97033a5d56092138a37aba79437cbbf6a65b125b0d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Arbitrage spread forecasting</topic><topic>Computational linguistics</topic><topic>Cuckoo algorithm</topic><topic>Economic forecasting</topic><topic>Forecasts and trends</topic><topic>Hyperparameter setting</topic><topic>Language processing</topic><topic>LSTM networks</topic><topic>Natural language interfaces</topic><topic>Zebra algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Mingfu</creatorcontrib><creatorcontrib>Liu, Yaxing</creatorcontrib><creatorcontrib>Qin, Panke</creatorcontrib><creatorcontrib>Ding, Yongjie</creatorcontrib><creatorcontrib>Cai, Zhongqi</creatorcontrib><creatorcontrib>Gao, Zhenlun</creatorcontrib><creatorcontrib>Ye, Bo</creatorcontrib><creatorcontrib>Qi, Haoran</creatorcontrib><creatorcontrib>Cheng, Shenjie</creatorcontrib><creatorcontrib>Zeng, Zeliang</creatorcontrib><collection>Gale In Context: Science</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ. Computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Mingfu</au><au>Liu, Yaxing</au><au>Qin, Panke</au><au>Ding, Yongjie</au><au>Cai, Zhongqi</au><au>Gao, Zhenlun</au><au>Ye, Bo</au><au>Qi, Haoran</au><au>Cheng, Shenjie</au><au>Zeng, Zeliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving long short-term memory networks for arbitrage spread forecasting: integrating cuckoo and zebra algorithms in chaotic mapping space for enhanced accuracy</atitle><jtitle>PeerJ. Computer science</jtitle><date>2024-12-12</date><risdate>2024</risdate><volume>10</volume><spage>e2552</spage><pages>e2552-</pages><issn>2376-5992</issn><eissn>2376-5992</eissn><abstract>Long short-term memory (LSTM) networks, widely used for financial time series forecasting, face challenges in arbitrage spread prediction, especially in hyperparameter tuning for large datasets. These issues affect model complexity and adaptability to market dynamics. Existing heuristic algorithms for LSTM often struggle to capture the complex dynamics of futures spread data, limiting prediction accuracy. We propose an integrated Cuckoo and Zebra Algorithms-optimised LSTM (ICS-LSTM) network for arbitrage spread prediction. This method replaces the Lévy flight in the Cuckoo algorithm with the Zebra algorithm search, improving convergence speed and solution optimization. Experimental results showed a mean absolute percentage error (MAPE) of 0.011, mean square error (MSE) of 3.326, mean absolute error (MAE) of 1.267, and coefficient of determination (R2) of 0.996. The proposed model improved performance by reducing MAPE by 8.3-50.0%, MSE by 10.2-77.8%, and MAE by 9.3-63.0% compared to existing methods. These improvements translate to more accurate spread predictions, enhancing arbitrage opportunities and trading strategy profitability.</abstract><pub>PeerJ. Ltd</pub><doi>10.7717/peerj-cs.2552</doi><tpages>e2552</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2376-5992
ispartof PeerJ. Computer science, 2024-12, Vol.10, p.e2552
issn 2376-5992
2376-5992
language eng
recordid cdi_gale_incontextgauss_ISR_A819651378
source DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library
subjects Algorithms
Arbitrage spread forecasting
Computational linguistics
Cuckoo algorithm
Economic forecasting
Forecasts and trends
Hyperparameter setting
Language processing
LSTM networks
Natural language interfaces
Zebra algorithm
title Improving long short-term memory networks for arbitrage spread forecasting: integrating cuckoo and zebra algorithms in chaotic mapping space for enhanced accuracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20long%20short-term%20memory%20networks%20for%20arbitrage%20spread%20forecasting:%20integrating%20cuckoo%20and%20zebra%20algorithms%20in%20chaotic%20mapping%20space%20for%20enhanced%20accuracy&rft.jtitle=PeerJ.%20Computer%20science&rft.au=Zhu,%20Mingfu&rft.date=2024-12-12&rft.volume=10&rft.spage=e2552&rft.pages=e2552-&rft.issn=2376-5992&rft.eissn=2376-5992&rft_id=info:doi/10.7717/peerj-cs.2552&rft_dat=%3Cgale_doaj_%3EA819651378%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A819651378&rft_doaj_id=oai_doaj_org_article_8539ae7f108a43ac9b3b977d0a22169e&rfr_iscdi=true