Pineal gland transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in STH sheep with two FecB genotypes

Background Long noncoding RNA (lncRNA) has been identified as important regulator in hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, little is known of their expression pattern and potential roles in the pineal gland of sheep. Herein, RNA-Seq was used to detect transc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genetics 2021-02, Vol.22 (1), p.9-9, Article 9
Hauptverfasser: Li, Chunyan, He, Xiaoyun, Zhang, Zijun, Ren, Chunhuan, Chu, Mingxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 9
container_title BMC genetics
container_volume 22
creator Li, Chunyan
He, Xiaoyun
Zhang, Zijun
Ren, Chunhuan
Chu, Mingxing
description Background Long noncoding RNA (lncRNA) has been identified as important regulator in hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, little is known of their expression pattern and potential roles in the pineal gland of sheep. Herein, RNA-Seq was used to detect transcriptome expression pattern in pineal gland between follicular phase (FP) and luteal phase (LP) in FecB(BB) (MM) and FecB(++) (ww) STH sheep, respectively, and differentially expressed (DE) lncRNAs and mRNAs associated with reproduction were identified. Results Overall, 135 DE lncRNAs and 1360 DE mRNAs in pineal gland between MM and ww sheep were screened. Wherein, 39 DE lncRNAs and 764 DE mRNAs were identified (FP vs LP) in MM sheep, 96 DE lncRNAs and 596 DE mRNAs were identified (FP vs LP) in ww sheep. Moreover, GO and KEGG enrichment analysis indicated that the targets of DE lncRNAs and DE mRNAs were annotated to multiple biological processes such as phototransduction, circadian rhythm, melanogenesis, GSH metabolism and steroid biosynthesis, which directly or indirectly participate in hormone activities to affect sheep reproductive performance. Additionally, co-expression of lncRNAs-mRNAs and the network construction were performed based on correlation analysis, DE lncRNAs can modulate target genes involved in related pathways to affect sheep fecundity. Specifically, XLOC_466330, XLOC_532771, XLOC_028449 targeting RRM2B and GSTK1, XLOC_391199 targeting STMN1, XLOC_503926 targeting RAG2, XLOC_187711 targeting DLG4 were included. Conclusion All of these differential lncRNAs and mRNAs expression profiles in pineal gland provide a novel resource for elucidating regulatory mechanism underlying STH sheep prolificacy.
doi_str_mv 10.1186/s12863-020-00957-w
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A789360722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A789360722</galeid><sourcerecordid>A789360722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-75475dc800db7dfa429e354b05dcf34b503758889b9fe25d6058c18600d9d9043</originalsourceid><addsrcrecordid>eNqNksFu1DAQhiMEolXpC3BAlriAUMrEiZP4glRWlFaqKGoLVyvrTLKusvZiO136Jjwuk24pXcSh8sGW_f3_yDN_krzM4CDL6vJ9yHhd5ilwSAGkqNL1k2SXVzmkZV0UTx-cd5L9EK4AgIss5wKeJzt5XgLPcrmb_PpqLDYD64fGtiz6xgbtzSq6pdFs5V1nBmN75vGaqMDiAllrug492mhI57EfhyYaZ5nr2GD1-ZdDNlktp4NHekPydZPXYDqjG33DjGUXl8csLBBXbG3igsW1Y0eoP7IerYs3KwwvkmcdVcT9u30v-Xb06XJ2nJ6efT6ZHZ6mWpQippUoKtHqGqCdV23XFFxiLoo50GWXF3MBeSXqupZz2SEXbQmi1tQ_4mUrocj3kg8b39U4X2Kr6V--GdTKm2Xjb5RrjNp-sWahenetqlrmteRk8ObOwLsfI4aoliZoHKih6MageCEzKYDLitDX_6BXbvSWvjdRIKXgAH-pvhlQGds5qqsnU3U4FS2h4lPZg_9QtFqk0TmLNDncFrzdEhAT8WfsmzEEdXJx_nj27Ps2yzes9i4Ej9197zJQU1TVJqqKoqpuo6rWJHr1sOv3kj_BJKDeAGucuy5og1bjPUZhLjnICmjulOuZibcRnLnRRpK-e7w0_w29hQPW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490995200</pqid></control><display><type>article</type><title>Pineal gland transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in STH sheep with two FecB genotypes</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Li, Chunyan ; He, Xiaoyun ; Zhang, Zijun ; Ren, Chunhuan ; Chu, Mingxing</creator><creatorcontrib>Li, Chunyan ; He, Xiaoyun ; Zhang, Zijun ; Ren, Chunhuan ; Chu, Mingxing</creatorcontrib><description>Background Long noncoding RNA (lncRNA) has been identified as important regulator in hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, little is known of their expression pattern and potential roles in the pineal gland of sheep. Herein, RNA-Seq was used to detect transcriptome expression pattern in pineal gland between follicular phase (FP) and luteal phase (LP) in FecB(BB) (MM) and FecB(++) (ww) STH sheep, respectively, and differentially expressed (DE) lncRNAs and mRNAs associated with reproduction were identified. Results Overall, 135 DE lncRNAs and 1360 DE mRNAs in pineal gland between MM and ww sheep were screened. Wherein, 39 DE lncRNAs and 764 DE mRNAs were identified (FP vs LP) in MM sheep, 96 DE lncRNAs and 596 DE mRNAs were identified (FP vs LP) in ww sheep. Moreover, GO and KEGG enrichment analysis indicated that the targets of DE lncRNAs and DE mRNAs were annotated to multiple biological processes such as phototransduction, circadian rhythm, melanogenesis, GSH metabolism and steroid biosynthesis, which directly or indirectly participate in hormone activities to affect sheep reproductive performance. Additionally, co-expression of lncRNAs-mRNAs and the network construction were performed based on correlation analysis, DE lncRNAs can modulate target genes involved in related pathways to affect sheep fecundity. Specifically, XLOC_466330, XLOC_532771, XLOC_028449 targeting RRM2B and GSTK1, XLOC_391199 targeting STMN1, XLOC_503926 targeting RAG2, XLOC_187711 targeting DLG4 were included. Conclusion All of these differential lncRNAs and mRNAs expression profiles in pineal gland provide a novel resource for elucidating regulatory mechanism underlying STH sheep prolificacy.</description><identifier>ISSN: 2730-6844</identifier><identifier>EISSN: 2730-6844</identifier><identifier>EISSN: 1471-2156</identifier><identifier>DOI: 10.1186/s12863-020-00957-w</identifier><identifier>PMID: 33602139</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject>Analysis ; Animals ; Antisense RNA ; Cell adhesion &amp; migration ; Cell cycle ; Circadian rhythms ; Correlation analysis ; Diseases ; Endocrine system ; Fecundity ; Female ; Follicular Phase - genetics ; Gene expression ; Gene mutations ; Genes ; Genetic aspects ; Genetics &amp; Heredity ; Genomes ; Genotype ; Genotypes ; Growth ; Health aspects ; Hypothalamus ; Life Sciences &amp; Biomedicine ; Luteal Phase - genetics ; Mammals ; Messenger RNA ; Metabolism ; Mutation ; Ovaries ; Phototransduction ; Pineal gland ; Pineal Gland - metabolism ; Pituitary ; Proteins ; RAG2 protein ; RNA polymerase ; RNA sequencing ; RNA, Long Noncoding - genetics ; RNA, Messenger - genetics ; Science &amp; Technology ; Sheep ; Sheep - genetics ; Signal transduction ; Transcriptome ; Transcriptomes</subject><ispartof>BMC genetics, 2021-02, Vol.22 (1), p.9-9, Article 9</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000620970800002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c565t-75475dc800db7dfa429e354b05dcf34b503758889b9fe25d6058c18600d9d9043</citedby><cites>FETCH-LOGICAL-c565t-75475dc800db7dfa429e354b05dcf34b503758889b9fe25d6058c18600d9d9043</cites><orcidid>0000-0002-5164-0310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893892/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893892/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33602139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>He, Xiaoyun</creatorcontrib><creatorcontrib>Zhang, Zijun</creatorcontrib><creatorcontrib>Ren, Chunhuan</creatorcontrib><creatorcontrib>Chu, Mingxing</creatorcontrib><title>Pineal gland transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in STH sheep with two FecB genotypes</title><title>BMC genetics</title><addtitle>BMC GENOMIC DATA</addtitle><addtitle>BMC Genom Data</addtitle><description>Background Long noncoding RNA (lncRNA) has been identified as important regulator in hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, little is known of their expression pattern and potential roles in the pineal gland of sheep. Herein, RNA-Seq was used to detect transcriptome expression pattern in pineal gland between follicular phase (FP) and luteal phase (LP) in FecB(BB) (MM) and FecB(++) (ww) STH sheep, respectively, and differentially expressed (DE) lncRNAs and mRNAs associated with reproduction were identified. Results Overall, 135 DE lncRNAs and 1360 DE mRNAs in pineal gland between MM and ww sheep were screened. Wherein, 39 DE lncRNAs and 764 DE mRNAs were identified (FP vs LP) in MM sheep, 96 DE lncRNAs and 596 DE mRNAs were identified (FP vs LP) in ww sheep. Moreover, GO and KEGG enrichment analysis indicated that the targets of DE lncRNAs and DE mRNAs were annotated to multiple biological processes such as phototransduction, circadian rhythm, melanogenesis, GSH metabolism and steroid biosynthesis, which directly or indirectly participate in hormone activities to affect sheep reproductive performance. Additionally, co-expression of lncRNAs-mRNAs and the network construction were performed based on correlation analysis, DE lncRNAs can modulate target genes involved in related pathways to affect sheep fecundity. Specifically, XLOC_466330, XLOC_532771, XLOC_028449 targeting RRM2B and GSTK1, XLOC_391199 targeting STMN1, XLOC_503926 targeting RAG2, XLOC_187711 targeting DLG4 were included. Conclusion All of these differential lncRNAs and mRNAs expression profiles in pineal gland provide a novel resource for elucidating regulatory mechanism underlying STH sheep prolificacy.</description><subject>Analysis</subject><subject>Animals</subject><subject>Antisense RNA</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell cycle</subject><subject>Circadian rhythms</subject><subject>Correlation analysis</subject><subject>Diseases</subject><subject>Endocrine system</subject><subject>Fecundity</subject><subject>Female</subject><subject>Follicular Phase - genetics</subject><subject>Gene expression</subject><subject>Gene mutations</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetics &amp; Heredity</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Growth</subject><subject>Health aspects</subject><subject>Hypothalamus</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Luteal Phase - genetics</subject><subject>Mammals</subject><subject>Messenger RNA</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Ovaries</subject><subject>Phototransduction</subject><subject>Pineal gland</subject><subject>Pineal Gland - metabolism</subject><subject>Pituitary</subject><subject>Proteins</subject><subject>RAG2 protein</subject><subject>RNA polymerase</subject><subject>RNA sequencing</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>Science &amp; Technology</subject><subject>Sheep</subject><subject>Sheep - genetics</subject><subject>Signal transduction</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><issn>2730-6844</issn><issn>2730-6844</issn><issn>1471-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNksFu1DAQhiMEolXpC3BAlriAUMrEiZP4glRWlFaqKGoLVyvrTLKusvZiO136Jjwuk24pXcSh8sGW_f3_yDN_krzM4CDL6vJ9yHhd5ilwSAGkqNL1k2SXVzmkZV0UTx-cd5L9EK4AgIss5wKeJzt5XgLPcrmb_PpqLDYD64fGtiz6xgbtzSq6pdFs5V1nBmN75vGaqMDiAllrug492mhI57EfhyYaZ5nr2GD1-ZdDNlktp4NHekPydZPXYDqjG33DjGUXl8csLBBXbG3igsW1Y0eoP7IerYs3KwwvkmcdVcT9u30v-Xb06XJ2nJ6efT6ZHZ6mWpQippUoKtHqGqCdV23XFFxiLoo50GWXF3MBeSXqupZz2SEXbQmi1tQ_4mUrocj3kg8b39U4X2Kr6V--GdTKm2Xjb5RrjNp-sWahenetqlrmteRk8ObOwLsfI4aoliZoHKih6MageCEzKYDLitDX_6BXbvSWvjdRIKXgAH-pvhlQGds5qqsnU3U4FS2h4lPZg_9QtFqk0TmLNDncFrzdEhAT8WfsmzEEdXJx_nj27Ps2yzes9i4Ej9197zJQU1TVJqqKoqpuo6rWJHr1sOv3kj_BJKDeAGucuy5og1bjPUZhLjnICmjulOuZibcRnLnRRpK-e7w0_w29hQPW</recordid><startdate>20210218</startdate><enddate>20210218</enddate><creator>Li, Chunyan</creator><creator>He, Xiaoyun</creator><creator>Zhang, Zijun</creator><creator>Ren, Chunhuan</creator><creator>Chu, Mingxing</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5164-0310</orcidid></search><sort><creationdate>20210218</creationdate><title>Pineal gland transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in STH sheep with two FecB genotypes</title><author>Li, Chunyan ; He, Xiaoyun ; Zhang, Zijun ; Ren, Chunhuan ; Chu, Mingxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-75475dc800db7dfa429e354b05dcf34b503758889b9fe25d6058c18600d9d9043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Antisense RNA</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell cycle</topic><topic>Circadian rhythms</topic><topic>Correlation analysis</topic><topic>Diseases</topic><topic>Endocrine system</topic><topic>Fecundity</topic><topic>Female</topic><topic>Follicular Phase - genetics</topic><topic>Gene expression</topic><topic>Gene mutations</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetics &amp; Heredity</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Growth</topic><topic>Health aspects</topic><topic>Hypothalamus</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Luteal Phase - genetics</topic><topic>Mammals</topic><topic>Messenger RNA</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Ovaries</topic><topic>Phototransduction</topic><topic>Pineal gland</topic><topic>Pineal Gland - metabolism</topic><topic>Pituitary</topic><topic>Proteins</topic><topic>RAG2 protein</topic><topic>RNA polymerase</topic><topic>RNA sequencing</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>Science &amp; Technology</topic><topic>Sheep</topic><topic>Sheep - genetics</topic><topic>Signal transduction</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>He, Xiaoyun</creatorcontrib><creatorcontrib>Zhang, Zijun</creatorcontrib><creatorcontrib>Ren, Chunhuan</creatorcontrib><creatorcontrib>Chu, Mingxing</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chunyan</au><au>He, Xiaoyun</au><au>Zhang, Zijun</au><au>Ren, Chunhuan</au><au>Chu, Mingxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pineal gland transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in STH sheep with two FecB genotypes</atitle><jtitle>BMC genetics</jtitle><stitle>BMC GENOMIC DATA</stitle><addtitle>BMC Genom Data</addtitle><date>2021-02-18</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><artnum>9</artnum><issn>2730-6844</issn><eissn>2730-6844</eissn><eissn>1471-2156</eissn><abstract>Background Long noncoding RNA (lncRNA) has been identified as important regulator in hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, little is known of their expression pattern and potential roles in the pineal gland of sheep. Herein, RNA-Seq was used to detect transcriptome expression pattern in pineal gland between follicular phase (FP) and luteal phase (LP) in FecB(BB) (MM) and FecB(++) (ww) STH sheep, respectively, and differentially expressed (DE) lncRNAs and mRNAs associated with reproduction were identified. Results Overall, 135 DE lncRNAs and 1360 DE mRNAs in pineal gland between MM and ww sheep were screened. Wherein, 39 DE lncRNAs and 764 DE mRNAs were identified (FP vs LP) in MM sheep, 96 DE lncRNAs and 596 DE mRNAs were identified (FP vs LP) in ww sheep. Moreover, GO and KEGG enrichment analysis indicated that the targets of DE lncRNAs and DE mRNAs were annotated to multiple biological processes such as phototransduction, circadian rhythm, melanogenesis, GSH metabolism and steroid biosynthesis, which directly or indirectly participate in hormone activities to affect sheep reproductive performance. Additionally, co-expression of lncRNAs-mRNAs and the network construction were performed based on correlation analysis, DE lncRNAs can modulate target genes involved in related pathways to affect sheep fecundity. Specifically, XLOC_466330, XLOC_532771, XLOC_028449 targeting RRM2B and GSTK1, XLOC_391199 targeting STMN1, XLOC_503926 targeting RAG2, XLOC_187711 targeting DLG4 were included. Conclusion All of these differential lncRNAs and mRNAs expression profiles in pineal gland provide a novel resource for elucidating regulatory mechanism underlying STH sheep prolificacy.</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>33602139</pmid><doi>10.1186/s12863-020-00957-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5164-0310</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2730-6844
ispartof BMC genetics, 2021-02, Vol.22 (1), p.9-9, Article 9
issn 2730-6844
2730-6844
1471-2156
language eng
recordid cdi_gale_incontextgauss_ISR_A789360722
source MEDLINE; Springer Online Journals Complete; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Springer Nature OA/Free Journals
subjects Analysis
Animals
Antisense RNA
Cell adhesion & migration
Cell cycle
Circadian rhythms
Correlation analysis
Diseases
Endocrine system
Fecundity
Female
Follicular Phase - genetics
Gene expression
Gene mutations
Genes
Genetic aspects
Genetics & Heredity
Genomes
Genotype
Genotypes
Growth
Health aspects
Hypothalamus
Life Sciences & Biomedicine
Luteal Phase - genetics
Mammals
Messenger RNA
Metabolism
Mutation
Ovaries
Phototransduction
Pineal gland
Pineal Gland - metabolism
Pituitary
Proteins
RAG2 protein
RNA polymerase
RNA sequencing
RNA, Long Noncoding - genetics
RNA, Messenger - genetics
Science & Technology
Sheep
Sheep - genetics
Signal transduction
Transcriptome
Transcriptomes
title Pineal gland transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in STH sheep with two FecB genotypes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pineal%20gland%20transcriptomic%20profiling%20reveals%20the%20differential%20regulation%20of%20lncRNA%20and%20mRNA%20related%20to%20prolificacy%20in%20STH%20sheep%20with%20two%20FecB%20genotypes&rft.jtitle=BMC%20genetics&rft.au=Li,%20Chunyan&rft.date=2021-02-18&rft.volume=22&rft.issue=1&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.artnum=9&rft.issn=2730-6844&rft.eissn=2730-6844&rft_id=info:doi/10.1186/s12863-020-00957-w&rft_dat=%3Cgale_pubme%3EA789360722%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490995200&rft_id=info:pmid/33602139&rft_galeid=A789360722&rfr_iscdi=true