Precise Construction of High Metallicity and High Stability TM.sub.1/Cu.sub.2O

Single-atom catalysts (SACs) have attracted great interest in heterogeneous catalysis because of their excellent catalytic performance and suitable stability. Here, we construct a series of SACs by locating transition metal (TM) atoms on Cu.sub.2O(111) using first-principles. Due to the mightily cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters 2023-09, Vol.153 (9), p.2633
Hauptverfasser: Yu, Haishan, Cui, Lei, Wang, Chunlei, Zhang, DaDi, Kong, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 2633
container_title Catalysis letters
container_volume 153
creator Yu, Haishan
Cui, Lei
Wang, Chunlei
Zhang, DaDi
Kong, Yuan
description Single-atom catalysts (SACs) have attracted great interest in heterogeneous catalysis because of their excellent catalytic performance and suitable stability. Here, we construct a series of SACs by locating transition metal (TM) atoms on Cu.sub.2O(111) using first-principles. Due to the mightily change of the electronic and geometric properties, TM.sub.1/Cu.sub.2O(111) not only has good stability (binding energy less than - 2 eV), but also the catalyst, like alloys, retains the metallicity of single atoms to the greatest extent. Furthermore, the SACs TM.sub.1/Cu.sub.2O(111) reduce the band gap and promote charge transfer and charge separation. Pd.sub.1/Cu.sub.2O(111) exhibits excellent dual-effect catalytic capacity (overpotential of 1.23 V), with oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) barriers of 0.353 eV and 0.662 eV respectively. In the N.sub.2 reduction reaction (NRR), Mo.sub.1/Cu.sub.2O(111) performs the best. The distal mechanism is the most suitable reaction path in the catalytic reaction, and the free energy barrier of the rate-determining step is 0.464 eV. Our results provide a reference for the anchoring of TM in Cu.sub.2O(111), which facilitates the precise design of novel SACs.
doi_str_mv 10.1007/s10562-022-04208-8
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A760501823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760501823</galeid><sourcerecordid>A760501823</sourcerecordid><originalsourceid>FETCH-gale_incontextgauss_ISR_A7605018233</originalsourceid><addsrcrecordid>eNqVirkKwkAURadQcP0Bq2ktEt-bmMVSgqKFC8bCLoxxjCPDBHwT0L93_QGLyzkcLmMDBB8B4hEhhJHwQLw2FpB4SYO1ERC9IBaHFusQXQFgEuOkzdbbmyo0KZ5WltytLpyuLK_OfKHLC18pJ43RhXYPLu3pGzMnj9q8037lU330cZTWHxGbHmuepSHV_7HLhvPZPl14pTQq17aorFN3V8qaKF9mu3waRxACJiII_vk-AZg1Ra4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Precise Construction of High Metallicity and High Stability TM.sub.1/Cu.sub.2O</title><source>Springer Nature - Complete Springer Journals</source><creator>Yu, Haishan ; Cui, Lei ; Wang, Chunlei ; Zhang, DaDi ; Kong, Yuan</creator><creatorcontrib>Yu, Haishan ; Cui, Lei ; Wang, Chunlei ; Zhang, DaDi ; Kong, Yuan</creatorcontrib><description>Single-atom catalysts (SACs) have attracted great interest in heterogeneous catalysis because of their excellent catalytic performance and suitable stability. Here, we construct a series of SACs by locating transition metal (TM) atoms on Cu.sub.2O(111) using first-principles. Due to the mightily change of the electronic and geometric properties, TM.sub.1/Cu.sub.2O(111) not only has good stability (binding energy less than - 2 eV), but also the catalyst, like alloys, retains the metallicity of single atoms to the greatest extent. Furthermore, the SACs TM.sub.1/Cu.sub.2O(111) reduce the band gap and promote charge transfer and charge separation. Pd.sub.1/Cu.sub.2O(111) exhibits excellent dual-effect catalytic capacity (overpotential of 1.23 V), with oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) barriers of 0.353 eV and 0.662 eV respectively. In the N.sub.2 reduction reaction (NRR), Mo.sub.1/Cu.sub.2O(111) performs the best. The distal mechanism is the most suitable reaction path in the catalytic reaction, and the free energy barrier of the rate-determining step is 0.464 eV. Our results provide a reference for the anchoring of TM in Cu.sub.2O(111), which facilitates the precise design of novel SACs.</description><identifier>ISSN: 1011-372X</identifier><identifier>DOI: 10.1007/s10562-022-04208-8</identifier><language>eng</language><publisher>Springer</publisher><subject>Alloys ; Catalysts ; Force and energy ; Heterogeneous catalysis ; Transition metal compounds</subject><ispartof>Catalysis letters, 2023-09, Vol.153 (9), p.2633</ispartof><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yu, Haishan</creatorcontrib><creatorcontrib>Cui, Lei</creatorcontrib><creatorcontrib>Wang, Chunlei</creatorcontrib><creatorcontrib>Zhang, DaDi</creatorcontrib><creatorcontrib>Kong, Yuan</creatorcontrib><title>Precise Construction of High Metallicity and High Stability TM.sub.1/Cu.sub.2O</title><title>Catalysis letters</title><description>Single-atom catalysts (SACs) have attracted great interest in heterogeneous catalysis because of their excellent catalytic performance and suitable stability. Here, we construct a series of SACs by locating transition metal (TM) atoms on Cu.sub.2O(111) using first-principles. Due to the mightily change of the electronic and geometric properties, TM.sub.1/Cu.sub.2O(111) not only has good stability (binding energy less than - 2 eV), but also the catalyst, like alloys, retains the metallicity of single atoms to the greatest extent. Furthermore, the SACs TM.sub.1/Cu.sub.2O(111) reduce the band gap and promote charge transfer and charge separation. Pd.sub.1/Cu.sub.2O(111) exhibits excellent dual-effect catalytic capacity (overpotential of 1.23 V), with oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) barriers of 0.353 eV and 0.662 eV respectively. In the N.sub.2 reduction reaction (NRR), Mo.sub.1/Cu.sub.2O(111) performs the best. The distal mechanism is the most suitable reaction path in the catalytic reaction, and the free energy barrier of the rate-determining step is 0.464 eV. Our results provide a reference for the anchoring of TM in Cu.sub.2O(111), which facilitates the precise design of novel SACs.</description><subject>Alloys</subject><subject>Catalysts</subject><subject>Force and energy</subject><subject>Heterogeneous catalysis</subject><subject>Transition metal compounds</subject><issn>1011-372X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVirkKwkAURadQcP0Bq2ktEt-bmMVSgqKFC8bCLoxxjCPDBHwT0L93_QGLyzkcLmMDBB8B4hEhhJHwQLw2FpB4SYO1ERC9IBaHFusQXQFgEuOkzdbbmyo0KZ5WltytLpyuLK_OfKHLC18pJ43RhXYPLu3pGzMnj9q8037lU330cZTWHxGbHmuepSHV_7HLhvPZPl14pTQq17aorFN3V8qaKF9mu3waRxACJiII_vk-AZg1Ra4</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Yu, Haishan</creator><creator>Cui, Lei</creator><creator>Wang, Chunlei</creator><creator>Zhang, DaDi</creator><creator>Kong, Yuan</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20230901</creationdate><title>Precise Construction of High Metallicity and High Stability TM.sub.1/Cu.sub.2O</title><author>Yu, Haishan ; Cui, Lei ; Wang, Chunlei ; Zhang, DaDi ; Kong, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_incontextgauss_ISR_A7605018233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Catalysts</topic><topic>Force and energy</topic><topic>Heterogeneous catalysis</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Haishan</creatorcontrib><creatorcontrib>Cui, Lei</creatorcontrib><creatorcontrib>Wang, Chunlei</creatorcontrib><creatorcontrib>Zhang, DaDi</creatorcontrib><creatorcontrib>Kong, Yuan</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Haishan</au><au>Cui, Lei</au><au>Wang, Chunlei</au><au>Zhang, DaDi</au><au>Kong, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Construction of High Metallicity and High Stability TM.sub.1/Cu.sub.2O</atitle><jtitle>Catalysis letters</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>153</volume><issue>9</issue><spage>2633</spage><pages>2633-</pages><issn>1011-372X</issn><abstract>Single-atom catalysts (SACs) have attracted great interest in heterogeneous catalysis because of their excellent catalytic performance and suitable stability. Here, we construct a series of SACs by locating transition metal (TM) atoms on Cu.sub.2O(111) using first-principles. Due to the mightily change of the electronic and geometric properties, TM.sub.1/Cu.sub.2O(111) not only has good stability (binding energy less than - 2 eV), but also the catalyst, like alloys, retains the metallicity of single atoms to the greatest extent. Furthermore, the SACs TM.sub.1/Cu.sub.2O(111) reduce the band gap and promote charge transfer and charge separation. Pd.sub.1/Cu.sub.2O(111) exhibits excellent dual-effect catalytic capacity (overpotential of 1.23 V), with oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) barriers of 0.353 eV and 0.662 eV respectively. In the N.sub.2 reduction reaction (NRR), Mo.sub.1/Cu.sub.2O(111) performs the best. The distal mechanism is the most suitable reaction path in the catalytic reaction, and the free energy barrier of the rate-determining step is 0.464 eV. Our results provide a reference for the anchoring of TM in Cu.sub.2O(111), which facilitates the precise design of novel SACs.</abstract><pub>Springer</pub><doi>10.1007/s10562-022-04208-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2023-09, Vol.153 (9), p.2633
issn 1011-372X
language eng
recordid cdi_gale_incontextgauss_ISR_A760501823
source Springer Nature - Complete Springer Journals
subjects Alloys
Catalysts
Force and energy
Heterogeneous catalysis
Transition metal compounds
title Precise Construction of High Metallicity and High Stability TM.sub.1/Cu.sub.2O
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Construction%20of%20High%20Metallicity%20and%20High%20Stability%20TM.sub.1/Cu.sub.2O&rft.jtitle=Catalysis%20letters&rft.au=Yu,%20Haishan&rft.date=2023-09-01&rft.volume=153&rft.issue=9&rft.spage=2633&rft.pages=2633-&rft.issn=1011-372X&rft_id=info:doi/10.1007/s10562-022-04208-8&rft_dat=%3Cgale%3EA760501823%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A760501823&rfr_iscdi=true