Regional differences in clonal Japanese knotweed revealed by chemometrics-linked attenuated total reflection Fourier-transform infrared spectroscopy

Background Japanese knotweed (R. japonica var japonica) is one of the world's 100 worst invasive species, causing crop losses, damage to infrastructure, and erosion of ecosystem services. In the UK, this species is an all-female clone, which spreads by vegetative reproduction. Despite this gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC plant biology 2021-11, Vol.21 (1), p.522-522, Article 522
Hauptverfasser: Holden, Claire A., Morais, Camilo L. M., Taylor, Jane E., Martin, Francis L., Beckett, Paul, McAinsh, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 522
container_issue 1
container_start_page 522
container_title BMC plant biology
container_volume 21
creator Holden, Claire A.
Morais, Camilo L. M.
Taylor, Jane E.
Martin, Francis L.
Beckett, Paul
McAinsh, Martin
description Background Japanese knotweed (R. japonica var japonica) is one of the world's 100 worst invasive species, causing crop losses, damage to infrastructure, and erosion of ecosystem services. In the UK, this species is an all-female clone, which spreads by vegetative reproduction. Despite this genetic continuity, Japanese knotweed can colonise a wide variety of environmental habitats. However, little is known about the phenotypic plasticity responsible for the ability of Japanese knotweed to invade and thrive in such diverse habitats. We have used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, in which the spectral fingerprint generated allows subtle differences in composition to be clearly visualized, to examine regional differences in clonal Japanese knotweed. Results We have shown distinct differences in the spectral fingerprint region (1800-900 cm(- 1)) of Japanese knotweed from three different regions in the UK that were sufficient to successfully identify plants from different geographical regions with high accuracy using support vector machine (SVM) chemometrics. Conclusions These differences were not correlated with environmental variations between regions, raising the possibility that epigenetic modifications may contribute to the phenotypic plasticity responsible for the ability of R. japonica to invade and thrive in such diverse habitats.
doi_str_mv 10.1186/s12870-021-03293-y
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A686436063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A686436063</galeid><doaj_id>oai_doaj_org_article_2cbad73d9ead4ddd890e776ea3371da6</doaj_id><sourcerecordid>A686436063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-b972b20ca5b5e448e3dd37248dfed5d8df195f493c8f38690de0b3a9ad7aa0933</originalsourceid><addsrcrecordid>eNqNksFu1DAQhiMEoqXwAhxQJC4glGLHSWxfkKoVhUWVkAqcLceebL1N4sV2WvY9eGBmd8vSRRxQDh5Nvvkt__Nn2XNKTikVzdtIS8FJQUpaEFZKVqwfZMe04rQoy1I-vFcfZU9iXBJCuajk4-yIVbxmFRXH2c9LWDg_6j63rusgwGgg5m7MTb_tftIrPUKE_Hr06RbA5gFuQPdYtOvcXMHgB0jBmVj0brzGtk4JxkknLJNPKBGg68EkvCU_91NwEIoU9Bg7Hwa8qQs6IBtXyAQfjV-tn2aPOt1HeHZ3nmTfzt9_nX0sLj5_mM_OLgpTS56KVvKyLYnRdVtDVQlg1jJeVsJ2YGuLB5V1V0lmRMdEI4kF0jItteVaE8nYSTbf6Vqvl2oV3KDDWnnt1Lbhw0LpkJzpQZWmxTFmJWhbWWuFJMB5A5oxTq1uUOvdTms1tQNYAyM-sj8QPfwzuiu18DdK1FzWTKDAqzuB4L9PEJMaXDTQ9-i_n6Iqa9kQimvboC__QpdoLK5rS0kqS8L4H2qB61JotMd7zUZUnTWiqVhDmo0Hp_-g8LMwOONH6Bz2DwZeHwwgk-BHWugpRjX_cnnIljvW4GYjBmHvByVqk2G1y7DCDKtthtUah17cd3I_8ju0CLzZAbfQ-i4atwntHiOEcNpgHCqsCEVa_D89c0lvkjrz05jYL84BEUc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599192037</pqid></control><display><type>article</type><title>Regional differences in clonal Japanese knotweed revealed by chemometrics-linked attenuated total reflection Fourier-transform infrared spectroscopy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Holden, Claire A. ; Morais, Camilo L. M. ; Taylor, Jane E. ; Martin, Francis L. ; Beckett, Paul ; McAinsh, Martin</creator><creatorcontrib>Holden, Claire A. ; Morais, Camilo L. M. ; Taylor, Jane E. ; Martin, Francis L. ; Beckett, Paul ; McAinsh, Martin</creatorcontrib><description>Background Japanese knotweed (R. japonica var japonica) is one of the world's 100 worst invasive species, causing crop losses, damage to infrastructure, and erosion of ecosystem services. In the UK, this species is an all-female clone, which spreads by vegetative reproduction. Despite this genetic continuity, Japanese knotweed can colonise a wide variety of environmental habitats. However, little is known about the phenotypic plasticity responsible for the ability of Japanese knotweed to invade and thrive in such diverse habitats. We have used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, in which the spectral fingerprint generated allows subtle differences in composition to be clearly visualized, to examine regional differences in clonal Japanese knotweed. Results We have shown distinct differences in the spectral fingerprint region (1800-900 cm(- 1)) of Japanese knotweed from three different regions in the UK that were sufficient to successfully identify plants from different geographical regions with high accuracy using support vector machine (SVM) chemometrics. Conclusions These differences were not correlated with environmental variations between regions, raising the possibility that epigenetic modifications may contribute to the phenotypic plasticity responsible for the ability of R. japonica to invade and thrive in such diverse habitats.</description><identifier>ISSN: 1471-2229</identifier><identifier>EISSN: 1471-2229</identifier><identifier>DOI: 10.1186/s12870-021-03293-y</identifier><identifier>PMID: 34753418</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject>Adaptation, Physiological - genetics ; Analysis ; Carotenoids ; Chemometrics ; Climate ; Crop damage ; Crop losses ; Discriminant analysis ; Ecosystem ; Ecosystem services ; Environment ; Epigenetics ; Epigenomics ; Fallopia japonica - chemistry ; Fallopia japonica - genetics ; Fallopia japonica - growth &amp; development ; Fingerprints ; Fourier transforms ; FTIR spectroscopy ; Genetic aspects ; Genetic diversity ; Growth ; Habitats ; Identification and classification ; Infrared reflection ; Infrared spectroscopy ; Introduced Species ; Invasive species ; Japanese knotweed ; Life Sciences &amp; Biomedicine ; Lignin ; Methods ; Neural networks ; Phenotypic plasticity ; Phylogeography ; Physiological adaptation ; Plant Sciences ; Plastic properties ; Plasticity ; Polygonaceae ; Polygonum ; Regional differences ; Regions ; Reproduction (biology) ; Science &amp; Technology ; Soil ; Spectroscopy, Fourier Transform Infrared ; Spectrum analysis ; Support vector machines ; Vegetative reproduction</subject><ispartof>BMC plant biology, 2021-11, Vol.21 (1), p.522-522, Article 522</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000716448400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c597t-b972b20ca5b5e448e3dd37248dfed5d8df195f493c8f38690de0b3a9ad7aa0933</citedby><cites>FETCH-LOGICAL-c597t-b972b20ca5b5e448e3dd37248dfed5d8df195f493c8f38690de0b3a9ad7aa0933</cites><orcidid>0000-0002-7831-8671 ; 0000-0002-1467-7149 ; 0000-0003-4294-6470 ; 0000-0003-2573-787X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579538/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579538/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,39267,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34753418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holden, Claire A.</creatorcontrib><creatorcontrib>Morais, Camilo L. M.</creatorcontrib><creatorcontrib>Taylor, Jane E.</creatorcontrib><creatorcontrib>Martin, Francis L.</creatorcontrib><creatorcontrib>Beckett, Paul</creatorcontrib><creatorcontrib>McAinsh, Martin</creatorcontrib><title>Regional differences in clonal Japanese knotweed revealed by chemometrics-linked attenuated total reflection Fourier-transform infrared spectroscopy</title><title>BMC plant biology</title><addtitle>BMC PLANT BIOL</addtitle><addtitle>BMC Plant Biol</addtitle><description>Background Japanese knotweed (R. japonica var japonica) is one of the world's 100 worst invasive species, causing crop losses, damage to infrastructure, and erosion of ecosystem services. In the UK, this species is an all-female clone, which spreads by vegetative reproduction. Despite this genetic continuity, Japanese knotweed can colonise a wide variety of environmental habitats. However, little is known about the phenotypic plasticity responsible for the ability of Japanese knotweed to invade and thrive in such diverse habitats. We have used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, in which the spectral fingerprint generated allows subtle differences in composition to be clearly visualized, to examine regional differences in clonal Japanese knotweed. Results We have shown distinct differences in the spectral fingerprint region (1800-900 cm(- 1)) of Japanese knotweed from three different regions in the UK that were sufficient to successfully identify plants from different geographical regions with high accuracy using support vector machine (SVM) chemometrics. Conclusions These differences were not correlated with environmental variations between regions, raising the possibility that epigenetic modifications may contribute to the phenotypic plasticity responsible for the ability of R. japonica to invade and thrive in such diverse habitats.</description><subject>Adaptation, Physiological - genetics</subject><subject>Analysis</subject><subject>Carotenoids</subject><subject>Chemometrics</subject><subject>Climate</subject><subject>Crop damage</subject><subject>Crop losses</subject><subject>Discriminant analysis</subject><subject>Ecosystem</subject><subject>Ecosystem services</subject><subject>Environment</subject><subject>Epigenetics</subject><subject>Epigenomics</subject><subject>Fallopia japonica - chemistry</subject><subject>Fallopia japonica - genetics</subject><subject>Fallopia japonica - growth &amp; development</subject><subject>Fingerprints</subject><subject>Fourier transforms</subject><subject>FTIR spectroscopy</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Growth</subject><subject>Habitats</subject><subject>Identification and classification</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Introduced Species</subject><subject>Invasive species</subject><subject>Japanese knotweed</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lignin</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Phenotypic plasticity</subject><subject>Phylogeography</subject><subject>Physiological adaptation</subject><subject>Plant Sciences</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Polygonaceae</subject><subject>Polygonum</subject><subject>Regional differences</subject><subject>Regions</subject><subject>Reproduction (biology)</subject><subject>Science &amp; Technology</subject><subject>Soil</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><subject>Vegetative reproduction</subject><issn>1471-2229</issn><issn>1471-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNksFu1DAQhiMEoqXwAhxQJC4glGLHSWxfkKoVhUWVkAqcLceebL1N4sV2WvY9eGBmd8vSRRxQDh5Nvvkt__Nn2XNKTikVzdtIS8FJQUpaEFZKVqwfZMe04rQoy1I-vFcfZU9iXBJCuajk4-yIVbxmFRXH2c9LWDg_6j63rusgwGgg5m7MTb_tftIrPUKE_Hr06RbA5gFuQPdYtOvcXMHgB0jBmVj0brzGtk4JxkknLJNPKBGg68EkvCU_91NwEIoU9Bg7Hwa8qQs6IBtXyAQfjV-tn2aPOt1HeHZ3nmTfzt9_nX0sLj5_mM_OLgpTS56KVvKyLYnRdVtDVQlg1jJeVsJ2YGuLB5V1V0lmRMdEI4kF0jItteVaE8nYSTbf6Vqvl2oV3KDDWnnt1Lbhw0LpkJzpQZWmxTFmJWhbWWuFJMB5A5oxTq1uUOvdTms1tQNYAyM-sj8QPfwzuiu18DdK1FzWTKDAqzuB4L9PEJMaXDTQ9-i_n6Iqa9kQimvboC__QpdoLK5rS0kqS8L4H2qB61JotMd7zUZUnTWiqVhDmo0Hp_-g8LMwOONH6Bz2DwZeHwwgk-BHWugpRjX_cnnIljvW4GYjBmHvByVqk2G1y7DCDKtthtUah17cd3I_8ju0CLzZAbfQ-i4atwntHiOEcNpgHCqsCEVa_D89c0lvkjrz05jYL84BEUc</recordid><startdate>20211109</startdate><enddate>20211109</enddate><creator>Holden, Claire A.</creator><creator>Morais, Camilo L. M.</creator><creator>Taylor, Jane E.</creator><creator>Martin, Francis L.</creator><creator>Beckett, Paul</creator><creator>McAinsh, Martin</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7831-8671</orcidid><orcidid>https://orcid.org/0000-0002-1467-7149</orcidid><orcidid>https://orcid.org/0000-0003-4294-6470</orcidid><orcidid>https://orcid.org/0000-0003-2573-787X</orcidid></search><sort><creationdate>20211109</creationdate><title>Regional differences in clonal Japanese knotweed revealed by chemometrics-linked attenuated total reflection Fourier-transform infrared spectroscopy</title><author>Holden, Claire A. ; Morais, Camilo L. M. ; Taylor, Jane E. ; Martin, Francis L. ; Beckett, Paul ; McAinsh, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-b972b20ca5b5e448e3dd37248dfed5d8df195f493c8f38690de0b3a9ad7aa0933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Analysis</topic><topic>Carotenoids</topic><topic>Chemometrics</topic><topic>Climate</topic><topic>Crop damage</topic><topic>Crop losses</topic><topic>Discriminant analysis</topic><topic>Ecosystem</topic><topic>Ecosystem services</topic><topic>Environment</topic><topic>Epigenetics</topic><topic>Epigenomics</topic><topic>Fallopia japonica - chemistry</topic><topic>Fallopia japonica - genetics</topic><topic>Fallopia japonica - growth &amp; development</topic><topic>Fingerprints</topic><topic>Fourier transforms</topic><topic>FTIR spectroscopy</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Growth</topic><topic>Habitats</topic><topic>Identification and classification</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Introduced Species</topic><topic>Invasive species</topic><topic>Japanese knotweed</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lignin</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Phenotypic plasticity</topic><topic>Phylogeography</topic><topic>Physiological adaptation</topic><topic>Plant Sciences</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Polygonaceae</topic><topic>Polygonum</topic><topic>Regional differences</topic><topic>Regions</topic><topic>Reproduction (biology)</topic><topic>Science &amp; Technology</topic><topic>Soil</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><topic>Vegetative reproduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holden, Claire A.</creatorcontrib><creatorcontrib>Morais, Camilo L. M.</creatorcontrib><creatorcontrib>Taylor, Jane E.</creatorcontrib><creatorcontrib>Martin, Francis L.</creatorcontrib><creatorcontrib>Beckett, Paul</creatorcontrib><creatorcontrib>McAinsh, Martin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holden, Claire A.</au><au>Morais, Camilo L. M.</au><au>Taylor, Jane E.</au><au>Martin, Francis L.</au><au>Beckett, Paul</au><au>McAinsh, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional differences in clonal Japanese knotweed revealed by chemometrics-linked attenuated total reflection Fourier-transform infrared spectroscopy</atitle><jtitle>BMC plant biology</jtitle><stitle>BMC PLANT BIOL</stitle><addtitle>BMC Plant Biol</addtitle><date>2021-11-09</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>522</spage><epage>522</epage><pages>522-522</pages><artnum>522</artnum><issn>1471-2229</issn><eissn>1471-2229</eissn><abstract>Background Japanese knotweed (R. japonica var japonica) is one of the world's 100 worst invasive species, causing crop losses, damage to infrastructure, and erosion of ecosystem services. In the UK, this species is an all-female clone, which spreads by vegetative reproduction. Despite this genetic continuity, Japanese knotweed can colonise a wide variety of environmental habitats. However, little is known about the phenotypic plasticity responsible for the ability of Japanese knotweed to invade and thrive in such diverse habitats. We have used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, in which the spectral fingerprint generated allows subtle differences in composition to be clearly visualized, to examine regional differences in clonal Japanese knotweed. Results We have shown distinct differences in the spectral fingerprint region (1800-900 cm(- 1)) of Japanese knotweed from three different regions in the UK that were sufficient to successfully identify plants from different geographical regions with high accuracy using support vector machine (SVM) chemometrics. Conclusions These differences were not correlated with environmental variations between regions, raising the possibility that epigenetic modifications may contribute to the phenotypic plasticity responsible for the ability of R. japonica to invade and thrive in such diverse habitats.</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>34753418</pmid><doi>10.1186/s12870-021-03293-y</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7831-8671</orcidid><orcidid>https://orcid.org/0000-0002-1467-7149</orcidid><orcidid>https://orcid.org/0000-0003-4294-6470</orcidid><orcidid>https://orcid.org/0000-0003-2573-787X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2229
ispartof BMC plant biology, 2021-11, Vol.21 (1), p.522-522, Article 522
issn 1471-2229
1471-2229
language eng
recordid cdi_gale_incontextgauss_ISR_A686436063
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerNature Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adaptation, Physiological - genetics
Analysis
Carotenoids
Chemometrics
Climate
Crop damage
Crop losses
Discriminant analysis
Ecosystem
Ecosystem services
Environment
Epigenetics
Epigenomics
Fallopia japonica - chemistry
Fallopia japonica - genetics
Fallopia japonica - growth & development
Fingerprints
Fourier transforms
FTIR spectroscopy
Genetic aspects
Genetic diversity
Growth
Habitats
Identification and classification
Infrared reflection
Infrared spectroscopy
Introduced Species
Invasive species
Japanese knotweed
Life Sciences & Biomedicine
Lignin
Methods
Neural networks
Phenotypic plasticity
Phylogeography
Physiological adaptation
Plant Sciences
Plastic properties
Plasticity
Polygonaceae
Polygonum
Regional differences
Regions
Reproduction (biology)
Science & Technology
Soil
Spectroscopy, Fourier Transform Infrared
Spectrum analysis
Support vector machines
Vegetative reproduction
title Regional differences in clonal Japanese knotweed revealed by chemometrics-linked attenuated total reflection Fourier-transform infrared spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T06%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20differences%20in%20clonal%20Japanese%20knotweed%20revealed%20by%20chemometrics-linked%20attenuated%20total%20reflection%20Fourier-transform%20infrared%20spectroscopy&rft.jtitle=BMC%20plant%20biology&rft.au=Holden,%20Claire%20A.&rft.date=2021-11-09&rft.volume=21&rft.issue=1&rft.spage=522&rft.epage=522&rft.pages=522-522&rft.artnum=522&rft.issn=1471-2229&rft.eissn=1471-2229&rft_id=info:doi/10.1186/s12870-021-03293-y&rft_dat=%3Cgale_webof%3EA686436063%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599192037&rft_id=info:pmid/34753418&rft_galeid=A686436063&rft_doaj_id=oai_doaj_org_article_2cbad73d9ead4ddd890e776ea3371da6&rfr_iscdi=true