Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications
Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for sacchar...
Gespeichert in:
Veröffentlicht in: | Biotechnology for biofuels 2021-10, Vol.14 (1), p.1-202, Article 202 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Biotechnology for biofuels |
container_volume | 14 |
creator | Tong, Lige Zheng, Jie Wang, Xiao Wang, Xiaolu Huang, Huoqing Yang, Haomeng Tu, Tao Wang, Yuan Bai, Yingguo Yao, Bin Luo, Huiying Qin, Xing |
description | Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for saccharification in the starch industry. In this study, a novel glucoamylase-encoding gene TlGa15B from the thermophilic fungus Talaromyces leycettanus JCM12802 was cloned and expressed in Pichia pastoris. The optimal temperature and pH of recombinant TlGa15B were 65 â and 4.5, respectively. TlGa15B exhibited excellent thermostability at 60 â. To further improve thermostability without losing catalytic efficiency, TlGa15B-GA1 and TlGa15B-GA2 were designed by introducing disulfide bonds and optimizing residual charge-charge interactions in a region distant from the catalytic center. Compared with TlGa15B, mutants showed improved optimal temperature, melting temperature, specific activity, and catalytic efficiency. The mechanism underlying these improvements was elucidated through molecular dynamics simulation and dynamics cross-correlation matrices analysis. Besides, the performance of TlGa15B-GA2 was the same as that of the commercial glucoamylase during saccharification. We provide an effective strategy to simultaneously improve both thermostability and catalytic efficiency of glucoamylase. The excellent thermostability and high catalytic efficiency of TlGa15B-GA2 make it a good candidate for industrial saccharification applications. |
doi_str_mv | 10.1186/s13068-021-02052-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A681634703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681634703</galeid><doaj_id>oai_doaj_org_article_d1c19701ab994d9cb63d580fe2a85cc6</doaj_id><sourcerecordid>A681634703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-9bad3c64b27fd8b9e8d456a26820556a57a2d31f469e99576722aa03edb1266e3</originalsourceid><addsrcrecordid>eNpdktuKFDEQhhtR3HX1BbwKeKMXvebQne6-EZbFw8iKoOt1qE6qZ7KkkzFJL87T-WpmZwZxJIQqkq_-on6qql4yeslYL98mJqjsa8pZubTltXhUnbOubWrZi-bxP_lZ9SylO0ol62j3tDoTjWwlk9159Xs1b2O4xxl9JmEieYNxDinDaJ3NOwLeEA0Z3C5bTXCarLbo9e6BXbtFB5h3DhKSKYaZ3IKDEncaE3FYQs7gl0Q-X39hvKec3FsgyWasjY2oMxoyLxnW6DHZRHIg6DfgNRLrzZJytOBIAq03EG1pDdkGT2C7dcc8Pa-eTOASvjjGi-rHh_e315_qm68fV9dXN7VuG5nrYQQjtGxG3k2mHwfsTdNK4LIvxpWk7YAbwaZGDjgMbSc7zgGoQDMyLiWKi2p10DUB7tQ22hniTgWwav8Q4lpBLBY5VIZpNnSUwTgMjRn0KIVpezohh77VWhatdwet7TLOaHSxPoI7ET398Xaj1uFe9S2nbKBF4PVRIIafC6asZps0Ogcew5IUb3sheCtoW9BX_6F3YYm-WLWnGGsobQp1eaDWUAawfgqlry7H4Gx18DjZ8n4leyZF01FRCt6cFBQm46-8hiUltfr-7ZTlB1bHkFLE6e-kjKqHRVaHRVZlkdV-kZUQfwD2jOi3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583114004</pqid></control><display><type>article</type><title>Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Tong, Lige ; Zheng, Jie ; Wang, Xiao ; Wang, Xiaolu ; Huang, Huoqing ; Yang, Haomeng ; Tu, Tao ; Wang, Yuan ; Bai, Yingguo ; Yao, Bin ; Luo, Huiying ; Qin, Xing</creator><creatorcontrib>Tong, Lige ; Zheng, Jie ; Wang, Xiao ; Wang, Xiaolu ; Huang, Huoqing ; Yang, Haomeng ; Tu, Tao ; Wang, Yuan ; Bai, Yingguo ; Yao, Bin ; Luo, Huiying ; Qin, Xing</creatorcontrib><description>Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for saccharification in the starch industry. In this study, a novel glucoamylase-encoding gene TlGa15B from the thermophilic fungus Talaromyces leycettanus JCM12802 was cloned and expressed in Pichia pastoris. The optimal temperature and pH of recombinant TlGa15B were 65 â and 4.5, respectively. TlGa15B exhibited excellent thermostability at 60 â. To further improve thermostability without losing catalytic efficiency, TlGa15B-GA1 and TlGa15B-GA2 were designed by introducing disulfide bonds and optimizing residual charge-charge interactions in a region distant from the catalytic center. Compared with TlGa15B, mutants showed improved optimal temperature, melting temperature, specific activity, and catalytic efficiency. The mechanism underlying these improvements was elucidated through molecular dynamics simulation and dynamics cross-correlation matrices analysis. Besides, the performance of TlGa15B-GA2 was the same as that of the commercial glucoamylase during saccharification. We provide an effective strategy to simultaneously improve both thermostability and catalytic efficiency of glucoamylase. The excellent thermostability and high catalytic efficiency of TlGa15B-GA2 make it a good candidate for industrial saccharification applications.</description><identifier>ISSN: 1754-6834</identifier><identifier>EISSN: 1754-6834</identifier><identifier>DOI: 10.1186/s13068-021-02052-3</identifier><identifier>PMID: 34656167</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Amino acids ; Amylases ; Biochemical engineering ; Catalysis ; Catalytic efficiency ; Chemical engineering ; Chemical engineering research ; Chemical properties ; Correlation analysis ; Cross correlation ; Disulfide bonds ; Efficiency ; Engineering ; Enzymes ; Fungi ; Genetic aspects ; Glucoamylase ; Industrial application ; Industrial microorganisms ; Melt temperature ; Methods ; Microbial enzymes ; Molecular dynamics ; Molecular weight ; Mutagenesis ; Optimization ; Physiological aspects ; Proteins ; Saccharification ; Site-directed mutagenesis ; Starch ; Talaromyces ; Thermal equilibrium ; Thermal properties ; Thermal stability ; Thermophilic fungi ; Thermostability</subject><ispartof>Biotechnology for biofuels, 2021-10, Vol.14 (1), p.1-202, Article 202</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-9bad3c64b27fd8b9e8d456a26820556a57a2d31f469e99576722aa03edb1266e3</citedby><cites>FETCH-LOGICAL-c546t-9bad3c64b27fd8b9e8d456a26820556a57a2d31f469e99576722aa03edb1266e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520190/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520190/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Tong, Lige</creatorcontrib><creatorcontrib>Zheng, Jie</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Wang, Xiaolu</creatorcontrib><creatorcontrib>Huang, Huoqing</creatorcontrib><creatorcontrib>Yang, Haomeng</creatorcontrib><creatorcontrib>Tu, Tao</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Bai, Yingguo</creatorcontrib><creatorcontrib>Yao, Bin</creatorcontrib><creatorcontrib>Luo, Huiying</creatorcontrib><creatorcontrib>Qin, Xing</creatorcontrib><title>Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications</title><title>Biotechnology for biofuels</title><description>Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for saccharification in the starch industry. In this study, a novel glucoamylase-encoding gene TlGa15B from the thermophilic fungus Talaromyces leycettanus JCM12802 was cloned and expressed in Pichia pastoris. The optimal temperature and pH of recombinant TlGa15B were 65 â and 4.5, respectively. TlGa15B exhibited excellent thermostability at 60 â. To further improve thermostability without losing catalytic efficiency, TlGa15B-GA1 and TlGa15B-GA2 were designed by introducing disulfide bonds and optimizing residual charge-charge interactions in a region distant from the catalytic center. Compared with TlGa15B, mutants showed improved optimal temperature, melting temperature, specific activity, and catalytic efficiency. The mechanism underlying these improvements was elucidated through molecular dynamics simulation and dynamics cross-correlation matrices analysis. Besides, the performance of TlGa15B-GA2 was the same as that of the commercial glucoamylase during saccharification. We provide an effective strategy to simultaneously improve both thermostability and catalytic efficiency of glucoamylase. The excellent thermostability and high catalytic efficiency of TlGa15B-GA2 make it a good candidate for industrial saccharification applications.</description><subject>Amino acids</subject><subject>Amylases</subject><subject>Biochemical engineering</subject><subject>Catalysis</subject><subject>Catalytic efficiency</subject><subject>Chemical engineering</subject><subject>Chemical engineering research</subject><subject>Chemical properties</subject><subject>Correlation analysis</subject><subject>Cross correlation</subject><subject>Disulfide bonds</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Enzymes</subject><subject>Fungi</subject><subject>Genetic aspects</subject><subject>Glucoamylase</subject><subject>Industrial application</subject><subject>Industrial microorganisms</subject><subject>Melt temperature</subject><subject>Methods</subject><subject>Microbial enzymes</subject><subject>Molecular dynamics</subject><subject>Molecular weight</subject><subject>Mutagenesis</subject><subject>Optimization</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Saccharification</subject><subject>Site-directed mutagenesis</subject><subject>Starch</subject><subject>Talaromyces</subject><subject>Thermal equilibrium</subject><subject>Thermal properties</subject><subject>Thermal stability</subject><subject>Thermophilic fungi</subject><subject>Thermostability</subject><issn>1754-6834</issn><issn>1754-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNpdktuKFDEQhhtR3HX1BbwKeKMXvebQne6-EZbFw8iKoOt1qE6qZ7KkkzFJL87T-WpmZwZxJIQqkq_-on6qql4yeslYL98mJqjsa8pZubTltXhUnbOubWrZi-bxP_lZ9SylO0ol62j3tDoTjWwlk9159Xs1b2O4xxl9JmEieYNxDinDaJ3NOwLeEA0Z3C5bTXCarLbo9e6BXbtFB5h3DhKSKYaZ3IKDEncaE3FYQs7gl0Q-X39hvKec3FsgyWasjY2oMxoyLxnW6DHZRHIg6DfgNRLrzZJytOBIAq03EG1pDdkGT2C7dcc8Pa-eTOASvjjGi-rHh_e315_qm68fV9dXN7VuG5nrYQQjtGxG3k2mHwfsTdNK4LIvxpWk7YAbwaZGDjgMbSc7zgGoQDMyLiWKi2p10DUB7tQ22hniTgWwav8Q4lpBLBY5VIZpNnSUwTgMjRn0KIVpezohh77VWhatdwet7TLOaHSxPoI7ET398Xaj1uFe9S2nbKBF4PVRIIafC6asZps0Ogcew5IUb3sheCtoW9BX_6F3YYm-WLWnGGsobQp1eaDWUAawfgqlry7H4Gx18DjZ8n4leyZF01FRCt6cFBQm46-8hiUltfr-7ZTlB1bHkFLE6e-kjKqHRVaHRVZlkdV-kZUQfwD2jOi3</recordid><startdate>20211016</startdate><enddate>20211016</enddate><creator>Tong, Lige</creator><creator>Zheng, Jie</creator><creator>Wang, Xiao</creator><creator>Wang, Xiaolu</creator><creator>Huang, Huoqing</creator><creator>Yang, Haomeng</creator><creator>Tu, Tao</creator><creator>Wang, Yuan</creator><creator>Bai, Yingguo</creator><creator>Yao, Bin</creator><creator>Luo, Huiying</creator><creator>Qin, Xing</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211016</creationdate><title>Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications</title><author>Tong, Lige ; Zheng, Jie ; Wang, Xiao ; Wang, Xiaolu ; Huang, Huoqing ; Yang, Haomeng ; Tu, Tao ; Wang, Yuan ; Bai, Yingguo ; Yao, Bin ; Luo, Huiying ; Qin, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-9bad3c64b27fd8b9e8d456a26820556a57a2d31f469e99576722aa03edb1266e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Amylases</topic><topic>Biochemical engineering</topic><topic>Catalysis</topic><topic>Catalytic efficiency</topic><topic>Chemical engineering</topic><topic>Chemical engineering research</topic><topic>Chemical properties</topic><topic>Correlation analysis</topic><topic>Cross correlation</topic><topic>Disulfide bonds</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Enzymes</topic><topic>Fungi</topic><topic>Genetic aspects</topic><topic>Glucoamylase</topic><topic>Industrial application</topic><topic>Industrial microorganisms</topic><topic>Melt temperature</topic><topic>Methods</topic><topic>Microbial enzymes</topic><topic>Molecular dynamics</topic><topic>Molecular weight</topic><topic>Mutagenesis</topic><topic>Optimization</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Saccharification</topic><topic>Site-directed mutagenesis</topic><topic>Starch</topic><topic>Talaromyces</topic><topic>Thermal equilibrium</topic><topic>Thermal properties</topic><topic>Thermal stability</topic><topic>Thermophilic fungi</topic><topic>Thermostability</topic><toplevel>online_resources</toplevel><creatorcontrib>Tong, Lige</creatorcontrib><creatorcontrib>Zheng, Jie</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Wang, Xiaolu</creatorcontrib><creatorcontrib>Huang, Huoqing</creatorcontrib><creatorcontrib>Yang, Haomeng</creatorcontrib><creatorcontrib>Tu, Tao</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Bai, Yingguo</creatorcontrib><creatorcontrib>Yao, Bin</creatorcontrib><creatorcontrib>Luo, Huiying</creatorcontrib><creatorcontrib>Qin, Xing</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biotechnology for biofuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Lige</au><au>Zheng, Jie</au><au>Wang, Xiao</au><au>Wang, Xiaolu</au><au>Huang, Huoqing</au><au>Yang, Haomeng</au><au>Tu, Tao</au><au>Wang, Yuan</au><au>Bai, Yingguo</au><au>Yao, Bin</au><au>Luo, Huiying</au><au>Qin, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications</atitle><jtitle>Biotechnology for biofuels</jtitle><date>2021-10-16</date><risdate>2021</risdate><volume>14</volume><issue>1</issue><spage>1</spage><epage>202</epage><pages>1-202</pages><artnum>202</artnum><issn>1754-6834</issn><eissn>1754-6834</eissn><abstract>Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for saccharification in the starch industry. In this study, a novel glucoamylase-encoding gene TlGa15B from the thermophilic fungus Talaromyces leycettanus JCM12802 was cloned and expressed in Pichia pastoris. The optimal temperature and pH of recombinant TlGa15B were 65 â and 4.5, respectively. TlGa15B exhibited excellent thermostability at 60 â. To further improve thermostability without losing catalytic efficiency, TlGa15B-GA1 and TlGa15B-GA2 were designed by introducing disulfide bonds and optimizing residual charge-charge interactions in a region distant from the catalytic center. Compared with TlGa15B, mutants showed improved optimal temperature, melting temperature, specific activity, and catalytic efficiency. The mechanism underlying these improvements was elucidated through molecular dynamics simulation and dynamics cross-correlation matrices analysis. Besides, the performance of TlGa15B-GA2 was the same as that of the commercial glucoamylase during saccharification. We provide an effective strategy to simultaneously improve both thermostability and catalytic efficiency of glucoamylase. The excellent thermostability and high catalytic efficiency of TlGa15B-GA2 make it a good candidate for industrial saccharification applications.</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>34656167</pmid><doi>10.1186/s13068-021-02052-3</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-6834 |
ispartof | Biotechnology for biofuels, 2021-10, Vol.14 (1), p.1-202, Article 202 |
issn | 1754-6834 1754-6834 |
language | eng |
recordid | cdi_gale_incontextgauss_ISR_A681634703 |
source | DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Amino acids Amylases Biochemical engineering Catalysis Catalytic efficiency Chemical engineering Chemical engineering research Chemical properties Correlation analysis Cross correlation Disulfide bonds Efficiency Engineering Enzymes Fungi Genetic aspects Glucoamylase Industrial application Industrial microorganisms Melt temperature Methods Microbial enzymes Molecular dynamics Molecular weight Mutagenesis Optimization Physiological aspects Proteins Saccharification Site-directed mutagenesis Starch Talaromyces Thermal equilibrium Thermal properties Thermal stability Thermophilic fungi Thermostability |
title | Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20thermostability%20and%20catalytic%20efficiency%20of%20glucoamylase%20from%20Talaromyces%20leycettanus%20JCM12802%20via%20site-directed%20mutagenesis%20to%20enhance%20industrial%20saccharification%20applications&rft.jtitle=Biotechnology%20for%20biofuels&rft.au=Tong,%20Lige&rft.date=2021-10-16&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=202&rft.pages=1-202&rft.artnum=202&rft.issn=1754-6834&rft.eissn=1754-6834&rft_id=info:doi/10.1186/s13068-021-02052-3&rft_dat=%3Cgale_doaj_%3EA681634703%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583114004&rft_id=info:pmid/34656167&rft_galeid=A681634703&rft_doaj_id=oai_doaj_org_article_d1c19701ab994d9cb63d580fe2a85cc6&rfr_iscdi=true |