Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications

Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for sacchar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology for biofuels 2021-10, Vol.14 (1), p.1-202, Article 202
Hauptverfasser: Tong, Lige, Zheng, Jie, Wang, Xiao, Wang, Xiaolu, Huang, Huoqing, Yang, Haomeng, Tu, Tao, Wang, Yuan, Bai, Yingguo, Yao, Bin, Luo, Huiying, Qin, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 1
container_start_page 1
container_title Biotechnology for biofuels
container_volume 14
creator Tong, Lige
Zheng, Jie
Wang, Xiao
Wang, Xiaolu
Huang, Huoqing
Yang, Haomeng
Tu, Tao
Wang, Yuan
Bai, Yingguo
Yao, Bin
Luo, Huiying
Qin, Xing
description Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for saccharification in the starch industry. In this study, a novel glucoamylase-encoding gene TlGa15B from the thermophilic fungus Talaromyces leycettanus JCM12802 was cloned and expressed in Pichia pastoris. The optimal temperature and pH of recombinant TlGa15B were 65 â and 4.5, respectively. TlGa15B exhibited excellent thermostability at 60 â. To further improve thermostability without losing catalytic efficiency, TlGa15B-GA1 and TlGa15B-GA2 were designed by introducing disulfide bonds and optimizing residual charge-charge interactions in a region distant from the catalytic center. Compared with TlGa15B, mutants showed improved optimal temperature, melting temperature, specific activity, and catalytic efficiency. The mechanism underlying these improvements was elucidated through molecular dynamics simulation and dynamics cross-correlation matrices analysis. Besides, the performance of TlGa15B-GA2 was the same as that of the commercial glucoamylase during saccharification. We provide an effective strategy to simultaneously improve both thermostability and catalytic efficiency of glucoamylase. The excellent thermostability and high catalytic efficiency of TlGa15B-GA2 make it a good candidate for industrial saccharification applications.
doi_str_mv 10.1186/s13068-021-02052-3
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A681634703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681634703</galeid><doaj_id>oai_doaj_org_article_d1c19701ab994d9cb63d580fe2a85cc6</doaj_id><sourcerecordid>A681634703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-9bad3c64b27fd8b9e8d456a26820556a57a2d31f469e99576722aa03edb1266e3</originalsourceid><addsrcrecordid>eNpdktuKFDEQhhtR3HX1BbwKeKMXvebQne6-EZbFw8iKoOt1qE6qZ7KkkzFJL87T-WpmZwZxJIQqkq_-on6qql4yeslYL98mJqjsa8pZubTltXhUnbOubWrZi-bxP_lZ9SylO0ol62j3tDoTjWwlk9159Xs1b2O4xxl9JmEieYNxDinDaJ3NOwLeEA0Z3C5bTXCarLbo9e6BXbtFB5h3DhKSKYaZ3IKDEncaE3FYQs7gl0Q-X39hvKec3FsgyWasjY2oMxoyLxnW6DHZRHIg6DfgNRLrzZJytOBIAq03EG1pDdkGT2C7dcc8Pa-eTOASvjjGi-rHh_e315_qm68fV9dXN7VuG5nrYQQjtGxG3k2mHwfsTdNK4LIvxpWk7YAbwaZGDjgMbSc7zgGoQDMyLiWKi2p10DUB7tQ22hniTgWwav8Q4lpBLBY5VIZpNnSUwTgMjRn0KIVpezohh77VWhatdwet7TLOaHSxPoI7ET398Xaj1uFe9S2nbKBF4PVRIIafC6asZps0Ogcew5IUb3sheCtoW9BX_6F3YYm-WLWnGGsobQp1eaDWUAawfgqlry7H4Gx18DjZ8n4leyZF01FRCt6cFBQm46-8hiUltfr-7ZTlB1bHkFLE6e-kjKqHRVaHRVZlkdV-kZUQfwD2jOi3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583114004</pqid></control><display><type>article</type><title>Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Tong, Lige ; Zheng, Jie ; Wang, Xiao ; Wang, Xiaolu ; Huang, Huoqing ; Yang, Haomeng ; Tu, Tao ; Wang, Yuan ; Bai, Yingguo ; Yao, Bin ; Luo, Huiying ; Qin, Xing</creator><creatorcontrib>Tong, Lige ; Zheng, Jie ; Wang, Xiao ; Wang, Xiaolu ; Huang, Huoqing ; Yang, Haomeng ; Tu, Tao ; Wang, Yuan ; Bai, Yingguo ; Yao, Bin ; Luo, Huiying ; Qin, Xing</creatorcontrib><description>Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for saccharification in the starch industry. In this study, a novel glucoamylase-encoding gene TlGa15B from the thermophilic fungus Talaromyces leycettanus JCM12802 was cloned and expressed in Pichia pastoris. The optimal temperature and pH of recombinant TlGa15B were 65 â and 4.5, respectively. TlGa15B exhibited excellent thermostability at 60 â. To further improve thermostability without losing catalytic efficiency, TlGa15B-GA1 and TlGa15B-GA2 were designed by introducing disulfide bonds and optimizing residual charge-charge interactions in a region distant from the catalytic center. Compared with TlGa15B, mutants showed improved optimal temperature, melting temperature, specific activity, and catalytic efficiency. The mechanism underlying these improvements was elucidated through molecular dynamics simulation and dynamics cross-correlation matrices analysis. Besides, the performance of TlGa15B-GA2 was the same as that of the commercial glucoamylase during saccharification. We provide an effective strategy to simultaneously improve both thermostability and catalytic efficiency of glucoamylase. The excellent thermostability and high catalytic efficiency of TlGa15B-GA2 make it a good candidate for industrial saccharification applications.</description><identifier>ISSN: 1754-6834</identifier><identifier>EISSN: 1754-6834</identifier><identifier>DOI: 10.1186/s13068-021-02052-3</identifier><identifier>PMID: 34656167</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Amino acids ; Amylases ; Biochemical engineering ; Catalysis ; Catalytic efficiency ; Chemical engineering ; Chemical engineering research ; Chemical properties ; Correlation analysis ; Cross correlation ; Disulfide bonds ; Efficiency ; Engineering ; Enzymes ; Fungi ; Genetic aspects ; Glucoamylase ; Industrial application ; Industrial microorganisms ; Melt temperature ; Methods ; Microbial enzymes ; Molecular dynamics ; Molecular weight ; Mutagenesis ; Optimization ; Physiological aspects ; Proteins ; Saccharification ; Site-directed mutagenesis ; Starch ; Talaromyces ; Thermal equilibrium ; Thermal properties ; Thermal stability ; Thermophilic fungi ; Thermostability</subject><ispartof>Biotechnology for biofuels, 2021-10, Vol.14 (1), p.1-202, Article 202</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-9bad3c64b27fd8b9e8d456a26820556a57a2d31f469e99576722aa03edb1266e3</citedby><cites>FETCH-LOGICAL-c546t-9bad3c64b27fd8b9e8d456a26820556a57a2d31f469e99576722aa03edb1266e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520190/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520190/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Tong, Lige</creatorcontrib><creatorcontrib>Zheng, Jie</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Wang, Xiaolu</creatorcontrib><creatorcontrib>Huang, Huoqing</creatorcontrib><creatorcontrib>Yang, Haomeng</creatorcontrib><creatorcontrib>Tu, Tao</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Bai, Yingguo</creatorcontrib><creatorcontrib>Yao, Bin</creatorcontrib><creatorcontrib>Luo, Huiying</creatorcontrib><creatorcontrib>Qin, Xing</creatorcontrib><title>Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications</title><title>Biotechnology for biofuels</title><description>Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for saccharification in the starch industry. In this study, a novel glucoamylase-encoding gene TlGa15B from the thermophilic fungus Talaromyces leycettanus JCM12802 was cloned and expressed in Pichia pastoris. The optimal temperature and pH of recombinant TlGa15B were 65 â and 4.5, respectively. TlGa15B exhibited excellent thermostability at 60 â. To further improve thermostability without losing catalytic efficiency, TlGa15B-GA1 and TlGa15B-GA2 were designed by introducing disulfide bonds and optimizing residual charge-charge interactions in a region distant from the catalytic center. Compared with TlGa15B, mutants showed improved optimal temperature, melting temperature, specific activity, and catalytic efficiency. The mechanism underlying these improvements was elucidated through molecular dynamics simulation and dynamics cross-correlation matrices analysis. Besides, the performance of TlGa15B-GA2 was the same as that of the commercial glucoamylase during saccharification. We provide an effective strategy to simultaneously improve both thermostability and catalytic efficiency of glucoamylase. The excellent thermostability and high catalytic efficiency of TlGa15B-GA2 make it a good candidate for industrial saccharification applications.</description><subject>Amino acids</subject><subject>Amylases</subject><subject>Biochemical engineering</subject><subject>Catalysis</subject><subject>Catalytic efficiency</subject><subject>Chemical engineering</subject><subject>Chemical engineering research</subject><subject>Chemical properties</subject><subject>Correlation analysis</subject><subject>Cross correlation</subject><subject>Disulfide bonds</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Enzymes</subject><subject>Fungi</subject><subject>Genetic aspects</subject><subject>Glucoamylase</subject><subject>Industrial application</subject><subject>Industrial microorganisms</subject><subject>Melt temperature</subject><subject>Methods</subject><subject>Microbial enzymes</subject><subject>Molecular dynamics</subject><subject>Molecular weight</subject><subject>Mutagenesis</subject><subject>Optimization</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Saccharification</subject><subject>Site-directed mutagenesis</subject><subject>Starch</subject><subject>Talaromyces</subject><subject>Thermal equilibrium</subject><subject>Thermal properties</subject><subject>Thermal stability</subject><subject>Thermophilic fungi</subject><subject>Thermostability</subject><issn>1754-6834</issn><issn>1754-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNpdktuKFDEQhhtR3HX1BbwKeKMXvebQne6-EZbFw8iKoOt1qE6qZ7KkkzFJL87T-WpmZwZxJIQqkq_-on6qql4yeslYL98mJqjsa8pZubTltXhUnbOubWrZi-bxP_lZ9SylO0ol62j3tDoTjWwlk9159Xs1b2O4xxl9JmEieYNxDinDaJ3NOwLeEA0Z3C5bTXCarLbo9e6BXbtFB5h3DhKSKYaZ3IKDEncaE3FYQs7gl0Q-X39hvKec3FsgyWasjY2oMxoyLxnW6DHZRHIg6DfgNRLrzZJytOBIAq03EG1pDdkGT2C7dcc8Pa-eTOASvjjGi-rHh_e315_qm68fV9dXN7VuG5nrYQQjtGxG3k2mHwfsTdNK4LIvxpWk7YAbwaZGDjgMbSc7zgGoQDMyLiWKi2p10DUB7tQ22hniTgWwav8Q4lpBLBY5VIZpNnSUwTgMjRn0KIVpezohh77VWhatdwet7TLOaHSxPoI7ET398Xaj1uFe9S2nbKBF4PVRIIafC6asZps0Ogcew5IUb3sheCtoW9BX_6F3YYm-WLWnGGsobQp1eaDWUAawfgqlry7H4Gx18DjZ8n4leyZF01FRCt6cFBQm46-8hiUltfr-7ZTlB1bHkFLE6e-kjKqHRVaHRVZlkdV-kZUQfwD2jOi3</recordid><startdate>20211016</startdate><enddate>20211016</enddate><creator>Tong, Lige</creator><creator>Zheng, Jie</creator><creator>Wang, Xiao</creator><creator>Wang, Xiaolu</creator><creator>Huang, Huoqing</creator><creator>Yang, Haomeng</creator><creator>Tu, Tao</creator><creator>Wang, Yuan</creator><creator>Bai, Yingguo</creator><creator>Yao, Bin</creator><creator>Luo, Huiying</creator><creator>Qin, Xing</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211016</creationdate><title>Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications</title><author>Tong, Lige ; Zheng, Jie ; Wang, Xiao ; Wang, Xiaolu ; Huang, Huoqing ; Yang, Haomeng ; Tu, Tao ; Wang, Yuan ; Bai, Yingguo ; Yao, Bin ; Luo, Huiying ; Qin, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-9bad3c64b27fd8b9e8d456a26820556a57a2d31f469e99576722aa03edb1266e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Amylases</topic><topic>Biochemical engineering</topic><topic>Catalysis</topic><topic>Catalytic efficiency</topic><topic>Chemical engineering</topic><topic>Chemical engineering research</topic><topic>Chemical properties</topic><topic>Correlation analysis</topic><topic>Cross correlation</topic><topic>Disulfide bonds</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Enzymes</topic><topic>Fungi</topic><topic>Genetic aspects</topic><topic>Glucoamylase</topic><topic>Industrial application</topic><topic>Industrial microorganisms</topic><topic>Melt temperature</topic><topic>Methods</topic><topic>Microbial enzymes</topic><topic>Molecular dynamics</topic><topic>Molecular weight</topic><topic>Mutagenesis</topic><topic>Optimization</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Saccharification</topic><topic>Site-directed mutagenesis</topic><topic>Starch</topic><topic>Talaromyces</topic><topic>Thermal equilibrium</topic><topic>Thermal properties</topic><topic>Thermal stability</topic><topic>Thermophilic fungi</topic><topic>Thermostability</topic><toplevel>online_resources</toplevel><creatorcontrib>Tong, Lige</creatorcontrib><creatorcontrib>Zheng, Jie</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Wang, Xiaolu</creatorcontrib><creatorcontrib>Huang, Huoqing</creatorcontrib><creatorcontrib>Yang, Haomeng</creatorcontrib><creatorcontrib>Tu, Tao</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Bai, Yingguo</creatorcontrib><creatorcontrib>Yao, Bin</creatorcontrib><creatorcontrib>Luo, Huiying</creatorcontrib><creatorcontrib>Qin, Xing</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biotechnology for biofuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Lige</au><au>Zheng, Jie</au><au>Wang, Xiao</au><au>Wang, Xiaolu</au><au>Huang, Huoqing</au><au>Yang, Haomeng</au><au>Tu, Tao</au><au>Wang, Yuan</au><au>Bai, Yingguo</au><au>Yao, Bin</au><au>Luo, Huiying</au><au>Qin, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications</atitle><jtitle>Biotechnology for biofuels</jtitle><date>2021-10-16</date><risdate>2021</risdate><volume>14</volume><issue>1</issue><spage>1</spage><epage>202</epage><pages>1-202</pages><artnum>202</artnum><issn>1754-6834</issn><eissn>1754-6834</eissn><abstract>Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for saccharification in the starch industry. In this study, a novel glucoamylase-encoding gene TlGa15B from the thermophilic fungus Talaromyces leycettanus JCM12802 was cloned and expressed in Pichia pastoris. The optimal temperature and pH of recombinant TlGa15B were 65 â and 4.5, respectively. TlGa15B exhibited excellent thermostability at 60 â. To further improve thermostability without losing catalytic efficiency, TlGa15B-GA1 and TlGa15B-GA2 were designed by introducing disulfide bonds and optimizing residual charge-charge interactions in a region distant from the catalytic center. Compared with TlGa15B, mutants showed improved optimal temperature, melting temperature, specific activity, and catalytic efficiency. The mechanism underlying these improvements was elucidated through molecular dynamics simulation and dynamics cross-correlation matrices analysis. Besides, the performance of TlGa15B-GA2 was the same as that of the commercial glucoamylase during saccharification. We provide an effective strategy to simultaneously improve both thermostability and catalytic efficiency of glucoamylase. The excellent thermostability and high catalytic efficiency of TlGa15B-GA2 make it a good candidate for industrial saccharification applications.</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>34656167</pmid><doi>10.1186/s13068-021-02052-3</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-6834
ispartof Biotechnology for biofuels, 2021-10, Vol.14 (1), p.1-202, Article 202
issn 1754-6834
1754-6834
language eng
recordid cdi_gale_incontextgauss_ISR_A681634703
source DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Amino acids
Amylases
Biochemical engineering
Catalysis
Catalytic efficiency
Chemical engineering
Chemical engineering research
Chemical properties
Correlation analysis
Cross correlation
Disulfide bonds
Efficiency
Engineering
Enzymes
Fungi
Genetic aspects
Glucoamylase
Industrial application
Industrial microorganisms
Melt temperature
Methods
Microbial enzymes
Molecular dynamics
Molecular weight
Mutagenesis
Optimization
Physiological aspects
Proteins
Saccharification
Site-directed mutagenesis
Starch
Talaromyces
Thermal equilibrium
Thermal properties
Thermal stability
Thermophilic fungi
Thermostability
title Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20thermostability%20and%20catalytic%20efficiency%20of%20glucoamylase%20from%20Talaromyces%20leycettanus%20JCM12802%20via%20site-directed%20mutagenesis%20to%20enhance%20industrial%20saccharification%20applications&rft.jtitle=Biotechnology%20for%20biofuels&rft.au=Tong,%20Lige&rft.date=2021-10-16&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=202&rft.pages=1-202&rft.artnum=202&rft.issn=1754-6834&rft.eissn=1754-6834&rft_id=info:doi/10.1186/s13068-021-02052-3&rft_dat=%3Cgale_doaj_%3EA681634703%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583114004&rft_id=info:pmid/34656167&rft_galeid=A681634703&rft_doaj_id=oai_doaj_org_article_d1c19701ab994d9cb63d580fe2a85cc6&rfr_iscdi=true