Using a nested single-model large ensemble to assess the internal variability of the North Atlantic Oscillation and its climatic implications for central Europe
Central European weather and climate are closely related to atmospheric mass advection triggered by the North Atlantic Oscillation (NAO), which is a relevant index for quantifying internal climate variability on multi-annual timescales. It remains unclear, however, how large-scale circulation variab...
Gespeichert in:
Veröffentlicht in: | Earth system dynamics 2020-07, Vol.11 (3), p.617-640 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 640 |
---|---|
container_issue | 3 |
container_start_page | 617 |
container_title | Earth system dynamics |
container_volume | 11 |
creator | Boehnisch, Andrea Ludwig, Ralf Leduc, Martin |
description | Central European weather and climate are closely related to atmospheric mass advection triggered by the North Atlantic Oscillation (NAO), which is a relevant index for quantifying internal climate variability on multi-annual timescales. It remains unclear, however, how large-scale circulation variability affects local climate characteristics when downscaled using a regional climate model. In this study, 50 members of a single-model initial-condition large ensemble (LE) of a nested regional climate model are analyzed for a NAO-climate relationship. The overall goal of the study is to assess whether the range of NAO internal variability is represented consistently between the driving global climate model (GCM; the Canadian Earth System Model version 2 - CanESM2) and the nested regional climate model (RCM; the Canadian Regional Climate Model version 5 - CRCM5). Responses of mean surface air temperature and total precipitation to changes in the NAO index value are examined in a central European domain in both CanESM2-LE and CRCM5-LE via Pearson correlation coefficients and the change per unit index change for historical (1981-2010) and future (2070-2099) winters. Results show that statistically robust NAO patterns are found in the CanESM2-LE under current forcing conditions. NAO flow pattern reproductions in the CanESM2-LE trigger responses in the high-resolution CRCM5-LE that are comparable to reanalysis data. NAO-response relationships weaken in the future period, but their intermember spread shows no significant change. The results stress the value of single-model ensembles for the evaluation of internal variability by pointing out the large differences of NAO-response relationships among individual members. They also strengthen the validity of the nested ensemble for further impact modeling using RCM data only, since important large-scale teleconnections present in the driving data propagate properly to the fine-scale dynamics in the RCM. |
doi_str_mv | 10.5194/esd-11-617-2020 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A630359219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A630359219</galeid><doaj_id>oai_doaj_org_article_082d579877784be890ec945d49ed4c5c</doaj_id><sourcerecordid>A630359219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-a9c60266646d6ff31808f60d0d5ba7edd5df22af180542a6b00c052476e61c753</originalsourceid><addsrcrecordid>eNqNUsGOFCEQ7RhN3Kx79kriyZjeBQbo7uNksuokGzdR90xoKGaZ0DACo-7f-KnSM2bMJB6EA1D13ktR9ZrmNcHXnAzsBrJpCWkF6VqKKX7WXFAy4JYNfff8dO-Gl81VzltcFxeUMH7R_HrILmyQQgFyAYPml4d2igY88iptAEHIMI0eUIlI5Qw5o_IIyIUCKSiPvqvk1Oi8K08o2kPuU0zlES2LV6E4je6zdt6r4mJAKhjkSkbau0nNSTftvNOHZEY2JqQhlFR1b_cp7uBV88Iqn-Hqz3nZPLy__br62N7df1ivlnetZl1XWjVogakQggkjrF2QHvdWYIMNH1UHxnBjKVW2xjmjSowYa8wp6wQIoju-uGzWR10T1VbuUq0uPcmonDwEYtpIlWq9HiTuqeFdbW3X9WyEfsCgB8YNG8AwzXXVenPU2qX4bV8bK7dxP_cqS8qowJUm-F_URlVRF2ys39aTy1ouxQIv-FDnVlHX_0DVbWByOgawrsbPCG_PCBVT4GfZqH3Ocv3l8zn25ojVKeacwJ4-TrCcjSWrsSQhshpLzsaqjP7I-AFjtHWuEDScWLOxOOG1xbPHyMqVw1xXcR9Kpb77f-riN6XL4OE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426078465</pqid></control><display><type>article</type><title>Using a nested single-model large ensemble to assess the internal variability of the North Atlantic Oscillation and its climatic implications for central Europe</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Boehnisch, Andrea ; Ludwig, Ralf ; Leduc, Martin</creator><creatorcontrib>Boehnisch, Andrea ; Ludwig, Ralf ; Leduc, Martin</creatorcontrib><description>Central European weather and climate are closely related to atmospheric mass advection triggered by the North Atlantic Oscillation (NAO), which is a relevant index for quantifying internal climate variability on multi-annual timescales. It remains unclear, however, how large-scale circulation variability affects local climate characteristics when downscaled using a regional climate model. In this study, 50 members of a single-model initial-condition large ensemble (LE) of a nested regional climate model are analyzed for a NAO-climate relationship. The overall goal of the study is to assess whether the range of NAO internal variability is represented consistently between the driving global climate model (GCM; the Canadian Earth System Model version 2 - CanESM2) and the nested regional climate model (RCM; the Canadian Regional Climate Model version 5 - CRCM5). Responses of mean surface air temperature and total precipitation to changes in the NAO index value are examined in a central European domain in both CanESM2-LE and CRCM5-LE via Pearson correlation coefficients and the change per unit index change for historical (1981-2010) and future (2070-2099) winters. Results show that statistically robust NAO patterns are found in the CanESM2-LE under current forcing conditions. NAO flow pattern reproductions in the CanESM2-LE trigger responses in the high-resolution CRCM5-LE that are comparable to reanalysis data. NAO-response relationships weaken in the future period, but their intermember spread shows no significant change. The results stress the value of single-model ensembles for the evaluation of internal variability by pointing out the large differences of NAO-response relationships among individual members. They also strengthen the validity of the nested ensemble for further impact modeling using RCM data only, since important large-scale teleconnections present in the driving data propagate properly to the fine-scale dynamics in the RCM.</description><identifier>ISSN: 2190-4979</identifier><identifier>ISSN: 2190-4987</identifier><identifier>EISSN: 2190-4987</identifier><identifier>DOI: 10.5194/esd-11-617-2020</identifier><language>eng</language><publisher>GOTTINGEN: Copernicus Gesellschaft Mbh</publisher><subject>Advection ; Air temperature ; Analysis ; Atmospheric forcing ; Atmospheric models ; Climate ; Climate change ; Climate cycles ; Climate models ; Climate variability ; Climatic indexes ; Coefficients ; Correlation coefficient ; Correlation coefficients ; Flow pattern ; Geology ; Geosciences, Multidisciplinary ; Global climate ; Global climate models ; Greenhouse gases ; Hydrology ; Local climates ; North Atlantic Oscillation ; Ocean-atmosphere system ; Physical Sciences ; Precipitation ; Principal components analysis ; Regional analysis ; Regional climate models ; Regional climates ; Science & Technology ; Simulation ; Standard deviation ; Surface temperature ; Surface-air temperature relationships ; Variability ; Weather</subject><ispartof>Earth system dynamics, 2020-07, Vol.11 (3), p.617-640</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000551505400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c477t-a9c60266646d6ff31808f60d0d5ba7edd5df22af180542a6b00c052476e61c753</citedby><cites>FETCH-LOGICAL-c477t-a9c60266646d6ff31808f60d0d5ba7edd5df22af180542a6b00c052476e61c753</cites><orcidid>0000-0002-1596-3788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,2116,27931,27932,28255</link.rule.ids></links><search><creatorcontrib>Boehnisch, Andrea</creatorcontrib><creatorcontrib>Ludwig, Ralf</creatorcontrib><creatorcontrib>Leduc, Martin</creatorcontrib><title>Using a nested single-model large ensemble to assess the internal variability of the North Atlantic Oscillation and its climatic implications for central Europe</title><title>Earth system dynamics</title><addtitle>EARTH SYST DYNAM</addtitle><description>Central European weather and climate are closely related to atmospheric mass advection triggered by the North Atlantic Oscillation (NAO), which is a relevant index for quantifying internal climate variability on multi-annual timescales. It remains unclear, however, how large-scale circulation variability affects local climate characteristics when downscaled using a regional climate model. In this study, 50 members of a single-model initial-condition large ensemble (LE) of a nested regional climate model are analyzed for a NAO-climate relationship. The overall goal of the study is to assess whether the range of NAO internal variability is represented consistently between the driving global climate model (GCM; the Canadian Earth System Model version 2 - CanESM2) and the nested regional climate model (RCM; the Canadian Regional Climate Model version 5 - CRCM5). Responses of mean surface air temperature and total precipitation to changes in the NAO index value are examined in a central European domain in both CanESM2-LE and CRCM5-LE via Pearson correlation coefficients and the change per unit index change for historical (1981-2010) and future (2070-2099) winters. Results show that statistically robust NAO patterns are found in the CanESM2-LE under current forcing conditions. NAO flow pattern reproductions in the CanESM2-LE trigger responses in the high-resolution CRCM5-LE that are comparable to reanalysis data. NAO-response relationships weaken in the future period, but their intermember spread shows no significant change. The results stress the value of single-model ensembles for the evaluation of internal variability by pointing out the large differences of NAO-response relationships among individual members. They also strengthen the validity of the nested ensemble for further impact modeling using RCM data only, since important large-scale teleconnections present in the driving data propagate properly to the fine-scale dynamics in the RCM.</description><subject>Advection</subject><subject>Air temperature</subject><subject>Analysis</subject><subject>Atmospheric forcing</subject><subject>Atmospheric models</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate cycles</subject><subject>Climate models</subject><subject>Climate variability</subject><subject>Climatic indexes</subject><subject>Coefficients</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Flow pattern</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Greenhouse gases</subject><subject>Hydrology</subject><subject>Local climates</subject><subject>North Atlantic Oscillation</subject><subject>Ocean-atmosphere system</subject><subject>Physical Sciences</subject><subject>Precipitation</subject><subject>Principal components analysis</subject><subject>Regional analysis</subject><subject>Regional climate models</subject><subject>Regional climates</subject><subject>Science & Technology</subject><subject>Simulation</subject><subject>Standard deviation</subject><subject>Surface temperature</subject><subject>Surface-air temperature relationships</subject><subject>Variability</subject><subject>Weather</subject><issn>2190-4979</issn><issn>2190-4987</issn><issn>2190-4987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUsGOFCEQ7RhN3Kx79kriyZjeBQbo7uNksuokGzdR90xoKGaZ0DACo-7f-KnSM2bMJB6EA1D13ktR9ZrmNcHXnAzsBrJpCWkF6VqKKX7WXFAy4JYNfff8dO-Gl81VzltcFxeUMH7R_HrILmyQQgFyAYPml4d2igY88iptAEHIMI0eUIlI5Qw5o_IIyIUCKSiPvqvk1Oi8K08o2kPuU0zlES2LV6E4je6zdt6r4mJAKhjkSkbau0nNSTftvNOHZEY2JqQhlFR1b_cp7uBV88Iqn-Hqz3nZPLy__br62N7df1ivlnetZl1XWjVogakQggkjrF2QHvdWYIMNH1UHxnBjKVW2xjmjSowYa8wp6wQIoju-uGzWR10T1VbuUq0uPcmonDwEYtpIlWq9HiTuqeFdbW3X9WyEfsCgB8YNG8AwzXXVenPU2qX4bV8bK7dxP_cqS8qowJUm-F_URlVRF2ys39aTy1ouxQIv-FDnVlHX_0DVbWByOgawrsbPCG_PCBVT4GfZqH3Ocv3l8zn25ojVKeacwJ4-TrCcjSWrsSQhshpLzsaqjP7I-AFjtHWuEDScWLOxOOG1xbPHyMqVw1xXcR9Kpb77f-riN6XL4OE</recordid><startdate>20200723</startdate><enddate>20200723</enddate><creator>Boehnisch, Andrea</creator><creator>Ludwig, Ralf</creator><creator>Leduc, Martin</creator><general>Copernicus Gesellschaft Mbh</general><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1596-3788</orcidid></search><sort><creationdate>20200723</creationdate><title>Using a nested single-model large ensemble to assess the internal variability of the North Atlantic Oscillation and its climatic implications for central Europe</title><author>Boehnisch, Andrea ; Ludwig, Ralf ; Leduc, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-a9c60266646d6ff31808f60d0d5ba7edd5df22af180542a6b00c052476e61c753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection</topic><topic>Air temperature</topic><topic>Analysis</topic><topic>Atmospheric forcing</topic><topic>Atmospheric models</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate cycles</topic><topic>Climate models</topic><topic>Climate variability</topic><topic>Climatic indexes</topic><topic>Coefficients</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Flow pattern</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Greenhouse gases</topic><topic>Hydrology</topic><topic>Local climates</topic><topic>North Atlantic Oscillation</topic><topic>Ocean-atmosphere system</topic><topic>Physical Sciences</topic><topic>Precipitation</topic><topic>Principal components analysis</topic><topic>Regional analysis</topic><topic>Regional climate models</topic><topic>Regional climates</topic><topic>Science & Technology</topic><topic>Simulation</topic><topic>Standard deviation</topic><topic>Surface temperature</topic><topic>Surface-air temperature relationships</topic><topic>Variability</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boehnisch, Andrea</creatorcontrib><creatorcontrib>Ludwig, Ralf</creatorcontrib><creatorcontrib>Leduc, Martin</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Earth system dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boehnisch, Andrea</au><au>Ludwig, Ralf</au><au>Leduc, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using a nested single-model large ensemble to assess the internal variability of the North Atlantic Oscillation and its climatic implications for central Europe</atitle><jtitle>Earth system dynamics</jtitle><stitle>EARTH SYST DYNAM</stitle><date>2020-07-23</date><risdate>2020</risdate><volume>11</volume><issue>3</issue><spage>617</spage><epage>640</epage><pages>617-640</pages><issn>2190-4979</issn><issn>2190-4987</issn><eissn>2190-4987</eissn><abstract>Central European weather and climate are closely related to atmospheric mass advection triggered by the North Atlantic Oscillation (NAO), which is a relevant index for quantifying internal climate variability on multi-annual timescales. It remains unclear, however, how large-scale circulation variability affects local climate characteristics when downscaled using a regional climate model. In this study, 50 members of a single-model initial-condition large ensemble (LE) of a nested regional climate model are analyzed for a NAO-climate relationship. The overall goal of the study is to assess whether the range of NAO internal variability is represented consistently between the driving global climate model (GCM; the Canadian Earth System Model version 2 - CanESM2) and the nested regional climate model (RCM; the Canadian Regional Climate Model version 5 - CRCM5). Responses of mean surface air temperature and total precipitation to changes in the NAO index value are examined in a central European domain in both CanESM2-LE and CRCM5-LE via Pearson correlation coefficients and the change per unit index change for historical (1981-2010) and future (2070-2099) winters. Results show that statistically robust NAO patterns are found in the CanESM2-LE under current forcing conditions. NAO flow pattern reproductions in the CanESM2-LE trigger responses in the high-resolution CRCM5-LE that are comparable to reanalysis data. NAO-response relationships weaken in the future period, but their intermember spread shows no significant change. The results stress the value of single-model ensembles for the evaluation of internal variability by pointing out the large differences of NAO-response relationships among individual members. They also strengthen the validity of the nested ensemble for further impact modeling using RCM data only, since important large-scale teleconnections present in the driving data propagate properly to the fine-scale dynamics in the RCM.</abstract><cop>GOTTINGEN</cop><pub>Copernicus Gesellschaft Mbh</pub><doi>10.5194/esd-11-617-2020</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-1596-3788</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-4979 |
ispartof | Earth system dynamics, 2020-07, Vol.11 (3), p.617-640 |
issn | 2190-4979 2190-4987 2190-4987 |
language | eng |
recordid | cdi_gale_incontextgauss_ISR_A630359219 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Advection Air temperature Analysis Atmospheric forcing Atmospheric models Climate Climate change Climate cycles Climate models Climate variability Climatic indexes Coefficients Correlation coefficient Correlation coefficients Flow pattern Geology Geosciences, Multidisciplinary Global climate Global climate models Greenhouse gases Hydrology Local climates North Atlantic Oscillation Ocean-atmosphere system Physical Sciences Precipitation Principal components analysis Regional analysis Regional climate models Regional climates Science & Technology Simulation Standard deviation Surface temperature Surface-air temperature relationships Variability Weather |
title | Using a nested single-model large ensemble to assess the internal variability of the North Atlantic Oscillation and its climatic implications for central Europe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T21%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20a%20nested%20single-model%20large%20ensemble%20to%20assess%20the%20internal%20variability%20of%20the%20North%20Atlantic%20Oscillation%20and%20its%20climatic%20implications%20for%20central%20Europe&rft.jtitle=Earth%20system%20dynamics&rft.au=Boehnisch,%20Andrea&rft.date=2020-07-23&rft.volume=11&rft.issue=3&rft.spage=617&rft.epage=640&rft.pages=617-640&rft.issn=2190-4979&rft.eissn=2190-4987&rft_id=info:doi/10.5194/esd-11-617-2020&rft_dat=%3Cgale_cross%3EA630359219%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426078465&rft_id=info:pmid/&rft_galeid=A630359219&rft_doaj_id=oai_doaj_org_article_082d579877784be890ec945d49ed4c5c&rfr_iscdi=true |