Heat Transfer and Ablation Prediction of Carbon/Carbon Composites in a Hypersonic Environment Using Fluid-Thermal-Ablation Multiphysical Coupling
Carbon/carbon composites are usually used as a thermal protection material in the nose cap and leading edge of hypersonic vehicles. In order to predict the thermal and ablation response of a carbon/carbon model in a hypersonic aerothermal environment, a multiphysical coupling model is established ta...
Gespeichert in:
Veröffentlicht in: | International Journal of Aerospace Engineering 2020, Vol.2020 (2020), p.1-13, Article 9232684 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | International Journal of Aerospace Engineering |
container_volume | 2020 |
creator | Sun, Xuewen Mi, Tao Yang, Haibo |
description | Carbon/carbon composites are usually used as a thermal protection material in the nose cap and leading edge of hypersonic vehicles. In order to predict the thermal and ablation response of a carbon/carbon model in a hypersonic aerothermal environment, a multiphysical coupling model is established taking into account thermochemical nonequilibrium of a flow field, heat transfer, and ablation of a material. A mesh movement algorithm is implemented to track the ablation recession. The flow field distribution and ablation recession are studied. The results show that the fluid-thermal-ablation coupling model can effectively predict the thermal and ablation response of the material. The temperature and heat flux in the stationary region of the carbon/carbon model change significantly with time. As time goes on, the wall temperature increases and the heat flux decreases. The ablation in the stagnation area is more serious than in the lateral area. The shape of the material changes, and the radius of the leading edge increases after ablation. The fluid-thermal-ablation coupling model can be used to provide reference for the design of a thermal protection system. |
doi_str_mv | 10.1155/2020/9232684 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A621476107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621476107</galeid><doaj_id>oai_doaj_org_article_2bd6d997429946628c8bbdb1718622d6</doaj_id><sourcerecordid>A621476107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-9c83097b6d93a4138e90ea15f051392a3b8db66942b8e6ceefd456c69ab887363</originalsourceid><addsrcrecordid>eNqNklGLEzEQxxdR8Dx981kCPonuXZLdZJPHUu5s4UTR3nPIZrNtym6yJtk7-zH8xqbdo6UgKHnIMPzmP5PJP8veIniFECHXGGJ4zXGBKSufZReIsionvCqfH2NKX2avQthCSCGpyEX2e6FlBCsvbWi1B9I2YFZ3MhpnwTevG6MOoWvBXPra2evpAnPXDy6YqAMwFkiw2A3aB2eNAjf2wXhne20juA_GrsFtN5omX22072WXH_W_jF00w2YXjJJdUhyHLtGvsxet7IJ-83RfZve3N6v5Ir_7-nk5n93liuAq5lyxAvKqpg0vZIkKpjnUEpEWElRwLIuaNTWlvMQ101Rp3TYloYpyWTNWFbS4zJaTbuPkVgze9NLvhJNGHBLOr4X00ahOC1w3qU1aJOa8pBQzxeq6qVGFGMW42Wu9n7QG736OOkSxdaO3aXyBC0JYgSrCT9RaJlFjWxe9VL0JSswoRmVFEawSdfUXKp1G90Y5q1uT8mcFH84KEhP1r7iWYwhi-eP7OftpYpV3IXjdHh-OoNh7SOw9JJ48lPCPE_6oa9cGZbRV-lgCYdo1ISUjKYIo0ez_6bmJBxekb7fx1GhjbCMfzb_GejfROjG6lSc62ZxCWvwBwXvuqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355831759</pqid></control><display><type>article</type><title>Heat Transfer and Ablation Prediction of Carbon/Carbon Composites in a Hypersonic Environment Using Fluid-Thermal-Ablation Multiphysical Coupling</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Sun, Xuewen ; Mi, Tao ; Yang, Haibo</creator><contributor>Vahala, Linda L. ; Linda L Vahala</contributor><creatorcontrib>Sun, Xuewen ; Mi, Tao ; Yang, Haibo ; Vahala, Linda L. ; Linda L Vahala</creatorcontrib><description>Carbon/carbon composites are usually used as a thermal protection material in the nose cap and leading edge of hypersonic vehicles. In order to predict the thermal and ablation response of a carbon/carbon model in a hypersonic aerothermal environment, a multiphysical coupling model is established taking into account thermochemical nonequilibrium of a flow field, heat transfer, and ablation of a material. A mesh movement algorithm is implemented to track the ablation recession. The flow field distribution and ablation recession are studied. The results show that the fluid-thermal-ablation coupling model can effectively predict the thermal and ablation response of the material. The temperature and heat flux in the stationary region of the carbon/carbon model change significantly with time. As time goes on, the wall temperature increases and the heat flux decreases. The ablation in the stagnation area is more serious than in the lateral area. The shape of the material changes, and the radius of the leading edge increases after ablation. The fluid-thermal-ablation coupling model can be used to provide reference for the design of a thermal protection system.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2020/9232684</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Ablative materials ; Aerospace engineering ; Aircraft ; Algorithms ; Carbon ; Chemical reactions ; Composite materials ; Coupling ; Energy conservation ; Engineering ; Engineering, Aerospace ; Finite element method ; Heat flux ; Heat transfer ; Hypersonic vehicles ; Nose cones ; Recession ; Recessions ; Science & Technology ; Technology ; Thermal protection ; Wall temperature</subject><ispartof>International Journal of Aerospace Engineering, 2020, Vol.2020 (2020), p.1-13, Article 9232684</ispartof><rights>Copyright © 2020 Xuewen Sun et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Xuewen Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000515548500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c527t-9c83097b6d93a4138e90ea15f051392a3b8db66942b8e6ceefd456c69ab887363</citedby><cites>FETCH-LOGICAL-c527t-9c83097b6d93a4138e90ea15f051392a3b8db66942b8e6ceefd456c69ab887363</cites><orcidid>0000-0003-0033-795X ; 0000-0003-2966-0283 ; 0000-0001-5932-4470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,878,2103,2115,4025,27927,27928,27929,28252</link.rule.ids></links><search><contributor>Vahala, Linda L.</contributor><contributor>Linda L Vahala</contributor><creatorcontrib>Sun, Xuewen</creatorcontrib><creatorcontrib>Mi, Tao</creatorcontrib><creatorcontrib>Yang, Haibo</creatorcontrib><title>Heat Transfer and Ablation Prediction of Carbon/Carbon Composites in a Hypersonic Environment Using Fluid-Thermal-Ablation Multiphysical Coupling</title><title>International Journal of Aerospace Engineering</title><addtitle>INT J AEROSPACE ENG</addtitle><description>Carbon/carbon composites are usually used as a thermal protection material in the nose cap and leading edge of hypersonic vehicles. In order to predict the thermal and ablation response of a carbon/carbon model in a hypersonic aerothermal environment, a multiphysical coupling model is established taking into account thermochemical nonequilibrium of a flow field, heat transfer, and ablation of a material. A mesh movement algorithm is implemented to track the ablation recession. The flow field distribution and ablation recession are studied. The results show that the fluid-thermal-ablation coupling model can effectively predict the thermal and ablation response of the material. The temperature and heat flux in the stationary region of the carbon/carbon model change significantly with time. As time goes on, the wall temperature increases and the heat flux decreases. The ablation in the stagnation area is more serious than in the lateral area. The shape of the material changes, and the radius of the leading edge increases after ablation. The fluid-thermal-ablation coupling model can be used to provide reference for the design of a thermal protection system.</description><subject>Ablative materials</subject><subject>Aerospace engineering</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Carbon</subject><subject>Chemical reactions</subject><subject>Composite materials</subject><subject>Coupling</subject><subject>Energy conservation</subject><subject>Engineering</subject><subject>Engineering, Aerospace</subject><subject>Finite element method</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Hypersonic vehicles</subject><subject>Nose cones</subject><subject>Recession</subject><subject>Recessions</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Thermal protection</subject><subject>Wall temperature</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNklGLEzEQxxdR8Dx981kCPonuXZLdZJPHUu5s4UTR3nPIZrNtym6yJtk7-zH8xqbdo6UgKHnIMPzmP5PJP8veIniFECHXGGJ4zXGBKSufZReIsionvCqfH2NKX2avQthCSCGpyEX2e6FlBCsvbWi1B9I2YFZ3MhpnwTevG6MOoWvBXPra2evpAnPXDy6YqAMwFkiw2A3aB2eNAjf2wXhne20juA_GrsFtN5omX22072WXH_W_jF00w2YXjJJdUhyHLtGvsxet7IJ-83RfZve3N6v5Ir_7-nk5n93liuAq5lyxAvKqpg0vZIkKpjnUEpEWElRwLIuaNTWlvMQ101Rp3TYloYpyWTNWFbS4zJaTbuPkVgze9NLvhJNGHBLOr4X00ahOC1w3qU1aJOa8pBQzxeq6qVGFGMW42Wu9n7QG736OOkSxdaO3aXyBC0JYgSrCT9RaJlFjWxe9VL0JSswoRmVFEawSdfUXKp1G90Y5q1uT8mcFH84KEhP1r7iWYwhi-eP7OftpYpV3IXjdHh-OoNh7SOw9JJ48lPCPE_6oa9cGZbRV-lgCYdo1ISUjKYIo0ez_6bmJBxekb7fx1GhjbCMfzb_GejfROjG6lSc62ZxCWvwBwXvuqg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sun, Xuewen</creator><creator>Mi, Tao</creator><creator>Yang, Haibo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Publishing Group</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0033-795X</orcidid><orcidid>https://orcid.org/0000-0003-2966-0283</orcidid><orcidid>https://orcid.org/0000-0001-5932-4470</orcidid></search><sort><creationdate>2020</creationdate><title>Heat Transfer and Ablation Prediction of Carbon/Carbon Composites in a Hypersonic Environment Using Fluid-Thermal-Ablation Multiphysical Coupling</title><author>Sun, Xuewen ; Mi, Tao ; Yang, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-9c83097b6d93a4138e90ea15f051392a3b8db66942b8e6ceefd456c69ab887363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablative materials</topic><topic>Aerospace engineering</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Carbon</topic><topic>Chemical reactions</topic><topic>Composite materials</topic><topic>Coupling</topic><topic>Energy conservation</topic><topic>Engineering</topic><topic>Engineering, Aerospace</topic><topic>Finite element method</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Hypersonic vehicles</topic><topic>Nose cones</topic><topic>Recession</topic><topic>Recessions</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Thermal protection</topic><topic>Wall temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xuewen</creatorcontrib><creatorcontrib>Mi, Tao</creatorcontrib><creatorcontrib>Yang, Haibo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International Journal of Aerospace Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xuewen</au><au>Mi, Tao</au><au>Yang, Haibo</au><au>Vahala, Linda L.</au><au>Linda L Vahala</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer and Ablation Prediction of Carbon/Carbon Composites in a Hypersonic Environment Using Fluid-Thermal-Ablation Multiphysical Coupling</atitle><jtitle>International Journal of Aerospace Engineering</jtitle><stitle>INT J AEROSPACE ENG</stitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>9232684</artnum><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>Carbon/carbon composites are usually used as a thermal protection material in the nose cap and leading edge of hypersonic vehicles. In order to predict the thermal and ablation response of a carbon/carbon model in a hypersonic aerothermal environment, a multiphysical coupling model is established taking into account thermochemical nonequilibrium of a flow field, heat transfer, and ablation of a material. A mesh movement algorithm is implemented to track the ablation recession. The flow field distribution and ablation recession are studied. The results show that the fluid-thermal-ablation coupling model can effectively predict the thermal and ablation response of the material. The temperature and heat flux in the stationary region of the carbon/carbon model change significantly with time. As time goes on, the wall temperature increases and the heat flux decreases. The ablation in the stagnation area is more serious than in the lateral area. The shape of the material changes, and the radius of the leading edge increases after ablation. The fluid-thermal-ablation coupling model can be used to provide reference for the design of a thermal protection system.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/9232684</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0033-795X</orcidid><orcidid>https://orcid.org/0000-0003-2966-0283</orcidid><orcidid>https://orcid.org/0000-0001-5932-4470</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5966 |
ispartof | International Journal of Aerospace Engineering, 2020, Vol.2020 (2020), p.1-13, Article 9232684 |
issn | 1687-5966 1687-5974 |
language | eng |
recordid | cdi_gale_incontextgauss_ISR_A621476107 |
source | DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Ablative materials Aerospace engineering Aircraft Algorithms Carbon Chemical reactions Composite materials Coupling Energy conservation Engineering Engineering, Aerospace Finite element method Heat flux Heat transfer Hypersonic vehicles Nose cones Recession Recessions Science & Technology Technology Thermal protection Wall temperature |
title | Heat Transfer and Ablation Prediction of Carbon/Carbon Composites in a Hypersonic Environment Using Fluid-Thermal-Ablation Multiphysical Coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20and%20Ablation%20Prediction%20of%20Carbon/Carbon%20Composites%20in%20a%20Hypersonic%20Environment%20Using%20Fluid-Thermal-Ablation%20Multiphysical%20Coupling&rft.jtitle=International%20Journal%20of%20Aerospace%20Engineering&rft.au=Sun,%20Xuewen&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=9232684&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2020/9232684&rft_dat=%3Cgale_doaj_%3EA621476107%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355831759&rft_id=info:pmid/&rft_galeid=A621476107&rft_doaj_id=oai_doaj_org_article_2bd6d997429946628c8bbdb1718622d6&rfr_iscdi=true |