A tethered-inchworm model of SMC DNA translocation

The DNA loop extrusion model is a provocative new concept explaining the formation of chromatin loops that revolutionizes understanding of genome organization. Central to this model is the structural maintenance of chromosomes (SMC) protein family, which is now thought to function as a DNA motor. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Structural and Molecular Biology 2018, Vol.25 (10), p.906
Hauptverfasser: Nichols, Michael H, Corces, Victor G
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 906
container_title Nature Structural and Molecular Biology
container_volume 25
creator Nichols, Michael H
Corces, Victor G
description The DNA loop extrusion model is a provocative new concept explaining the formation of chromatin loops that revolutionizes understanding of genome organization. Central to this model is the structural maintenance of chromosomes (SMC) protein family, which is now thought to function as a DNA motor. In this Perspective, we review and reinterpret the current knowledge of SMC structure and function and propose a novel mechanism for SMC motor activity.
doi_str_mv 10.1038/s41594-018-0135-4
format Report
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A593382183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593382183</galeid><sourcerecordid>A593382183</sourcerecordid><originalsourceid>FETCH-gale_incontextgauss_ISR_A5933821833</originalsourceid><addsrcrecordid>eNqVjL0OwiAYABk0sf48gBurAwr9IJaxqRoddLDuDWnpj6GQFIw-vh18AYfLLZdDaM3ollFIdp4zITmhLBkBQfgERUxwQaSUMENz75-UxkLsIUJxioMOrR50RTpbtm839Lh3lTbY1Ti_ZvhwG5NBWW9cqULn7BJNa2W8Xv28QJvT8ZGdSaOMLsaJs0F_QqNe3heX_F6kQgIkMUsA_mm_sfk73Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>A tethered-inchworm model of SMC DNA translocation</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Nichols, Michael H ; Corces, Victor G</creator><creatorcontrib>Nichols, Michael H ; Corces, Victor G</creatorcontrib><description>The DNA loop extrusion model is a provocative new concept explaining the formation of chromatin loops that revolutionizes understanding of genome organization. Central to this model is the structural maintenance of chromosomes (SMC) protein family, which is now thought to function as a DNA motor. In this Perspective, we review and reinterpret the current knowledge of SMC structure and function and propose a novel mechanism for SMC motor activity.</description><identifier>ISSN: 1545-9993</identifier><identifier>DOI: 10.1038/s41594-018-0135-4</identifier><language>eng</language><publisher>Nature Publishing Group</publisher><subject>Chromatin ; Chromosomes ; DNA ; Genetic aspects ; Genomes ; Genomics ; Mitosis ; Novels</subject><ispartof>Nature Structural and Molecular Biology, 2018, Vol.25 (10), p.906</ispartof><tpages>906</tpages><format>906</format><rights>COPYRIGHT 2018 Nature Publishing Group</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,4476,27902</link.rule.ids></links><search><creatorcontrib>Nichols, Michael H</creatorcontrib><creatorcontrib>Corces, Victor G</creatorcontrib><title>A tethered-inchworm model of SMC DNA translocation</title><title>Nature Structural and Molecular Biology</title><description>The DNA loop extrusion model is a provocative new concept explaining the formation of chromatin loops that revolutionizes understanding of genome organization. Central to this model is the structural maintenance of chromosomes (SMC) protein family, which is now thought to function as a DNA motor. In this Perspective, we review and reinterpret the current knowledge of SMC structure and function and propose a novel mechanism for SMC motor activity.</description><subject>Chromatin</subject><subject>Chromosomes</subject><subject>DNA</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Mitosis</subject><subject>Novels</subject><issn>1545-9993</issn><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2018</creationdate><recordtype>report</recordtype><recordid>eNqVjL0OwiAYABk0sf48gBurAwr9IJaxqRoddLDuDWnpj6GQFIw-vh18AYfLLZdDaM3ollFIdp4zITmhLBkBQfgERUxwQaSUMENz75-UxkLsIUJxioMOrR50RTpbtm839Lh3lTbY1Ti_ZvhwG5NBWW9cqULn7BJNa2W8Xv28QJvT8ZGdSaOMLsaJs0F_QqNe3heX_F6kQgIkMUsA_mm_sfk73Q</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Nichols, Michael H</creator><creator>Corces, Victor G</creator><general>Nature Publishing Group</general><scope>ISR</scope></search><sort><creationdate>20181001</creationdate><title>A tethered-inchworm model of SMC DNA translocation</title><author>Nichols, Michael H ; Corces, Victor G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_incontextgauss_ISR_A5933821833</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chromatin</topic><topic>Chromosomes</topic><topic>DNA</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Mitosis</topic><topic>Novels</topic><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Michael H</creatorcontrib><creatorcontrib>Corces, Victor G</creatorcontrib><collection>Gale In Context: Science</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Michael H</au><au>Corces, Victor G</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><atitle>A tethered-inchworm model of SMC DNA translocation</atitle><jtitle>Nature Structural and Molecular Biology</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>25</volume><issue>10</issue><spage>906</spage><pages>906-</pages><issn>1545-9993</issn><abstract>The DNA loop extrusion model is a provocative new concept explaining the formation of chromatin loops that revolutionizes understanding of genome organization. Central to this model is the structural maintenance of chromosomes (SMC) protein family, which is now thought to function as a DNA motor. In this Perspective, we review and reinterpret the current knowledge of SMC structure and function and propose a novel mechanism for SMC motor activity.</abstract><pub>Nature Publishing Group</pub><doi>10.1038/s41594-018-0135-4</doi><tpages>906</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature Structural and Molecular Biology, 2018, Vol.25 (10), p.906
issn 1545-9993
language eng
recordid cdi_gale_incontextgauss_ISR_A593382183
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Chromatin
Chromosomes
DNA
Genetic aspects
Genomes
Genomics
Mitosis
Novels
title A tethered-inchworm model of SMC DNA translocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.atitle=A%20tethered-inchworm%20model%20of%20SMC%20DNA%20translocation&rft.jtitle=Nature%20Structural%20and%20Molecular%20Biology&rft.au=Nichols,%20Michael%20H&rft.date=2018-10-01&rft.volume=25&rft.issue=10&rft.spage=906&rft.pages=906-&rft.issn=1545-9993&rft_id=info:doi/10.1038/s41594-018-0135-4&rft_dat=%3Cgale%3EA593382183%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A593382183&rfr_iscdi=true