Phase Diagram for the O

It is shown that the Imry-Ma theorem stating that in space dimensions d < 4 the introduction of an arbitrarily small concentration of defects of the "random local field" type in a system with continuous symmetry of the n-component vector order parameter (O(n) model) leads to long-range...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of the solid state 2017-10, Vol.59 (10), p.2016
Hauptverfasser: Berzin, A.A, Morosov, A.I, Sigov, A.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 2016
container_title Physics of the solid state
container_volume 59
creator Berzin, A.A
Morosov, A.I
Sigov, A.S
description It is shown that the Imry-Ma theorem stating that in space dimensions d < 4 the introduction of an arbitrarily small concentration of defects of the "random local field" type in a system with continuous symmetry of the n-component vector order parameter (O(n) model) leads to long-range order collapse and to the occurrence of a disordered state is not true if the anisotropic distribution of the defect-induced random local field directions in the space of the order parameter gives rise to the effective anisotropy of the "easy axis" type. In the case of a weakly anisotropic field distribution, in space dimensions 2 [less than or equal to] d < 4 there exists some critical defect concentration, above which the inhomogeneous Imry-Ma state can exist as an equilibrium one. At a lower defect concentration, long-range order takes place in the system. In the case of a strongly anisotropic field distribution, the Imry-Ma state is suppressed completely and long-range order state takes place at any defect concentration.
doi_str_mv 10.1134/S1063783417100067
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A521591603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A521591603</galeid><sourcerecordid>A521591603</sourcerecordid><originalsourceid>FETCH-gale_incontextgauss_ISR_A5215916033</originalsourceid><addsrcrecordid>eNpjYJA0NNAzNDQ20Q82NDAzNrcwNjE0NzQwMDAzZ2LgNDSwNNA1MzEzYAGxzYx1QfIcDFzFxVkGBoaGhqaWnAziARmJxakKLpmJ6UWJuQpp-UUKJRmpCv48DKxpiTnFqbxQmptB0801xNlDNz0xJzU-My85P68ktaIkPbG0uDjeMzgo3tHUCGigoZmBsTEpagFhHDNT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase Diagram for the O</title><source>SpringerLink Journals - AutoHoldings</source><creator>Berzin, A.A ; Morosov, A.I ; Sigov, A.S</creator><creatorcontrib>Berzin, A.A ; Morosov, A.I ; Sigov, A.S</creatorcontrib><description>It is shown that the Imry-Ma theorem stating that in space dimensions d &lt; 4 the introduction of an arbitrarily small concentration of defects of the "random local field" type in a system with continuous symmetry of the n-component vector order parameter (O(n) model) leads to long-range order collapse and to the occurrence of a disordered state is not true if the anisotropic distribution of the defect-induced random local field directions in the space of the order parameter gives rise to the effective anisotropy of the "easy axis" type. In the case of a weakly anisotropic field distribution, in space dimensions 2 [less than or equal to] d &lt; 4 there exists some critical defect concentration, above which the inhomogeneous Imry-Ma state can exist as an equilibrium one. At a lower defect concentration, long-range order takes place in the system. In the case of a strongly anisotropic field distribution, the Imry-Ma state is suppressed completely and long-range order state takes place at any defect concentration.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783417100067</identifier><language>eng</language><publisher>Springer</publisher><subject>Analysis ; Anisotropy</subject><ispartof>Physics of the solid state, 2017-10, Vol.59 (10), p.2016</ispartof><rights>COPYRIGHT 2017 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Berzin, A.A</creatorcontrib><creatorcontrib>Morosov, A.I</creatorcontrib><creatorcontrib>Sigov, A.S</creatorcontrib><title>Phase Diagram for the O</title><title>Physics of the solid state</title><description>It is shown that the Imry-Ma theorem stating that in space dimensions d &lt; 4 the introduction of an arbitrarily small concentration of defects of the "random local field" type in a system with continuous symmetry of the n-component vector order parameter (O(n) model) leads to long-range order collapse and to the occurrence of a disordered state is not true if the anisotropic distribution of the defect-induced random local field directions in the space of the order parameter gives rise to the effective anisotropy of the "easy axis" type. In the case of a weakly anisotropic field distribution, in space dimensions 2 [less than or equal to] d &lt; 4 there exists some critical defect concentration, above which the inhomogeneous Imry-Ma state can exist as an equilibrium one. At a lower defect concentration, long-range order takes place in the system. In the case of a strongly anisotropic field distribution, the Imry-Ma state is suppressed completely and long-range order state takes place at any defect concentration.</description><subject>Analysis</subject><subject>Anisotropy</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpjYJA0NNAzNDQ20Q82NDAzNrcwNjE0NzQwMDAzZ2LgNDSwNNA1MzEzYAGxzYx1QfIcDFzFxVkGBoaGhqaWnAziARmJxakKLpmJ6UWJuQpp-UUKJRmpCv48DKxpiTnFqbxQmptB0801xNlDNz0xJzU-My85P68ktaIkPbG0uDjeMzgo3tHUCGigoZmBsTEpagFhHDNT</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Berzin, A.A</creator><creator>Morosov, A.I</creator><creator>Sigov, A.S</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20171001</creationdate><title>Phase Diagram for the O</title><author>Berzin, A.A ; Morosov, A.I ; Sigov, A.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_incontextgauss_ISR_A5215916033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Anisotropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berzin, A.A</creatorcontrib><creatorcontrib>Morosov, A.I</creatorcontrib><creatorcontrib>Sigov, A.S</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berzin, A.A</au><au>Morosov, A.I</au><au>Sigov, A.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Diagram for the O</atitle><jtitle>Physics of the solid state</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>59</volume><issue>10</issue><spage>2016</spage><pages>2016-</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>It is shown that the Imry-Ma theorem stating that in space dimensions d &lt; 4 the introduction of an arbitrarily small concentration of defects of the "random local field" type in a system with continuous symmetry of the n-component vector order parameter (O(n) model) leads to long-range order collapse and to the occurrence of a disordered state is not true if the anisotropic distribution of the defect-induced random local field directions in the space of the order parameter gives rise to the effective anisotropy of the "easy axis" type. In the case of a weakly anisotropic field distribution, in space dimensions 2 [less than or equal to] d &lt; 4 there exists some critical defect concentration, above which the inhomogeneous Imry-Ma state can exist as an equilibrium one. At a lower defect concentration, long-range order takes place in the system. In the case of a strongly anisotropic field distribution, the Imry-Ma state is suppressed completely and long-range order state takes place at any defect concentration.</abstract><pub>Springer</pub><doi>10.1134/S1063783417100067</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7834
ispartof Physics of the solid state, 2017-10, Vol.59 (10), p.2016
issn 1063-7834
1090-6460
language eng
recordid cdi_gale_incontextgauss_ISR_A521591603
source SpringerLink Journals - AutoHoldings
subjects Analysis
Anisotropy
title Phase Diagram for the O
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Diagram%20for%20the%20O&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Berzin,%20A.A&rft.date=2017-10-01&rft.volume=59&rft.issue=10&rft.spage=2016&rft.pages=2016-&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783417100067&rft_dat=%3Cgale%3EA521591603%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A521591603&rfr_iscdi=true