A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming
We prove a central limit theorem for a class of additive processes that arise naturally in the theory of finite horizon Markov decision problems. The main theorem generalizes a classic result of Dobrushin for temporally nonhomogeneous Markov chains, and the principal innovation is that here the summ...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2016-11, Vol.41 (4), p.1448-1468 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1468 |
---|---|
container_issue | 4 |
container_start_page | 1448 |
container_title | Mathematics of operations research |
container_volume | 41 |
creator | Arlotto, Alessandro Steele, J. Michael |
description | We prove a central limit theorem for a class of additive processes that arise naturally in the theory of finite horizon Markov decision problems. The main theorem generalizes a classic result of Dobrushin for temporally nonhomogeneous Markov chains, and the principal innovation is that here the summands are permitted to depend on both the current state and a bounded number of future states of the chain. We show through several examples that this added flexibility gives one a direct path to asymptotic normality of the optimal total reward of finite horizon Markov decision problems. The same examples also explain why such results are not easily obtained by alternative Markovian techniques such as enlargement of the state space. |
doi_str_mv | 10.1287/moor.2016.0784 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A470229905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470229905</galeid><jstor_id>26179993</jstor_id><sourcerecordid>A470229905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-f58beed73e06186bdf7c27c775e22deb5b9d883055207e917bd307478d71e03b3</originalsourceid><addsrcrecordid>eNqFkt2L1DAUxYsoOK6--hwQBcGOSdo07eMw6rowfqAj-BbS9rbN7CTpJqk6__2mjLA7MCKBBO79nZtwcpLkOcFLQkv-VlvrlhSTYol5mT9IFoTRImU5Jw-TBc6KPOUF-_k4eeL9DmPCOMkXyfUKrcEEJ_doo7QKaDuAdaBRZx3agh5tbO0P6LM1g9W2B2Mnjz5Jd21_ofUglfHotwoDWo3jXjUyKBsrwaJ3ByO1atBXZ3sntVamf5o86uTew7O_50Xy48P77fpjuvlyebVebdKG5TSkHStrgJZngAtSFnXb8YbyhnMGlLZQs7pqyzLDjFHMoSK8bjPMc162nADO6uwieXGcOzp7M4EPYmcnZ-KVgpR5VWQkp8Ud1cs9CGU6G11otPKNWOUcU1pVmEUqPUNFGyD6Yg10KpZP-OUZPq4WohtnBa9OBJEJ8Cf0cvJenIKv_w1eff92yr65x9aTVwZ83Lzqh-CPknOPbpz13kEnRqe0dAdBsJizJeZsiTlbYs5WFLw8CnY-xMY9msavELQgvKqq7M692Qin_f_m3gILytnL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849631426</pqid></control><display><type>article</type><title>A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming</title><source>Informs</source><source>JSTOR Mathematics & Statistics</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Arlotto, Alessandro ; Steele, J. Michael</creator><creatorcontrib>Arlotto, Alessandro ; Steele, J. Michael</creatorcontrib><description>We prove a central limit theorem for a class of additive processes that arise naturally in the theory of finite horizon Markov decision problems. The main theorem generalizes a classic result of Dobrushin for temporally nonhomogeneous Markov chains, and the principal innovation is that here the summands are permitted to depend on both the current state and a bounded number of future states of the chain. We show through several examples that this added flexibility gives one a direct path to asymptotic normality of the optimal total reward of finite horizon Markov decision problems. The same examples also explain why such results are not easily obtained by alternative Markovian techniques such as enlargement of the state space.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.2016.0784</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>alternating subsequence ; Analysis ; Asymptotic methods ; Central limit theorem ; Decision theory ; dynamic inventory management ; Dynamic programming ; Inventory control ; Markov analysis ; Markov decision problem ; Markov processes ; nonhomogeneous Markov chain ; Optimization techniques ; sequential decision ; Studies ; Theorems</subject><ispartof>Mathematics of operations research, 2016-11, Vol.41 (4), p.1448-1468</ispartof><rights>Copyright 2016, Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2016 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Nov 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-f58beed73e06186bdf7c27c775e22deb5b9d883055207e917bd307478d71e03b3</citedby><cites>FETCH-LOGICAL-c542t-f58beed73e06186bdf7c27c775e22deb5b9d883055207e917bd307478d71e03b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26179993$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.2016.0784$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,832,3692,27924,27925,58017,58021,58250,58254,62616</link.rule.ids></links><search><creatorcontrib>Arlotto, Alessandro</creatorcontrib><creatorcontrib>Steele, J. Michael</creatorcontrib><title>A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming</title><title>Mathematics of operations research</title><description>We prove a central limit theorem for a class of additive processes that arise naturally in the theory of finite horizon Markov decision problems. The main theorem generalizes a classic result of Dobrushin for temporally nonhomogeneous Markov chains, and the principal innovation is that here the summands are permitted to depend on both the current state and a bounded number of future states of the chain. We show through several examples that this added flexibility gives one a direct path to asymptotic normality of the optimal total reward of finite horizon Markov decision problems. The same examples also explain why such results are not easily obtained by alternative Markovian techniques such as enlargement of the state space.</description><subject>alternating subsequence</subject><subject>Analysis</subject><subject>Asymptotic methods</subject><subject>Central limit theorem</subject><subject>Decision theory</subject><subject>dynamic inventory management</subject><subject>Dynamic programming</subject><subject>Inventory control</subject><subject>Markov analysis</subject><subject>Markov decision problem</subject><subject>Markov processes</subject><subject>nonhomogeneous Markov chain</subject><subject>Optimization techniques</subject><subject>sequential decision</subject><subject>Studies</subject><subject>Theorems</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkt2L1DAUxYsoOK6--hwQBcGOSdo07eMw6rowfqAj-BbS9rbN7CTpJqk6__2mjLA7MCKBBO79nZtwcpLkOcFLQkv-VlvrlhSTYol5mT9IFoTRImU5Jw-TBc6KPOUF-_k4eeL9DmPCOMkXyfUKrcEEJ_doo7QKaDuAdaBRZx3agh5tbO0P6LM1g9W2B2Mnjz5Jd21_ofUglfHotwoDWo3jXjUyKBsrwaJ3ByO1atBXZ3sntVamf5o86uTew7O_50Xy48P77fpjuvlyebVebdKG5TSkHStrgJZngAtSFnXb8YbyhnMGlLZQs7pqyzLDjFHMoSK8bjPMc162nADO6uwieXGcOzp7M4EPYmcnZ-KVgpR5VWQkp8Ud1cs9CGU6G11otPKNWOUcU1pVmEUqPUNFGyD6Yg10KpZP-OUZPq4WohtnBa9OBJEJ8Cf0cvJenIKv_w1eff92yr65x9aTVwZ83Lzqh-CPknOPbpz13kEnRqe0dAdBsJizJeZsiTlbYs5WFLw8CnY-xMY9msavELQgvKqq7M692Qin_f_m3gILytnL</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Arlotto, Alessandro</creator><creator>Steele, J. Michael</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>JQ2</scope></search><sort><creationdate>201611</creationdate><title>A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming</title><author>Arlotto, Alessandro ; Steele, J. Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-f58beed73e06186bdf7c27c775e22deb5b9d883055207e917bd307478d71e03b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>alternating subsequence</topic><topic>Analysis</topic><topic>Asymptotic methods</topic><topic>Central limit theorem</topic><topic>Decision theory</topic><topic>dynamic inventory management</topic><topic>Dynamic programming</topic><topic>Inventory control</topic><topic>Markov analysis</topic><topic>Markov decision problem</topic><topic>Markov processes</topic><topic>nonhomogeneous Markov chain</topic><topic>Optimization techniques</topic><topic>sequential decision</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arlotto, Alessandro</creatorcontrib><creatorcontrib>Steele, J. Michael</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arlotto, Alessandro</au><au>Steele, J. Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming</atitle><jtitle>Mathematics of operations research</jtitle><date>2016-11</date><risdate>2016</risdate><volume>41</volume><issue>4</issue><spage>1448</spage><epage>1468</epage><pages>1448-1468</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>We prove a central limit theorem for a class of additive processes that arise naturally in the theory of finite horizon Markov decision problems. The main theorem generalizes a classic result of Dobrushin for temporally nonhomogeneous Markov chains, and the principal innovation is that here the summands are permitted to depend on both the current state and a bounded number of future states of the chain. We show through several examples that this added flexibility gives one a direct path to asymptotic normality of the optimal total reward of finite horizon Markov decision problems. The same examples also explain why such results are not easily obtained by alternative Markovian techniques such as enlargement of the state space.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.2016.0784</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-765X |
ispartof | Mathematics of operations research, 2016-11, Vol.41 (4), p.1448-1468 |
issn | 0364-765X 1526-5471 |
language | eng |
recordid | cdi_gale_incontextgauss_ISR_A470229905 |
source | Informs; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing |
subjects | alternating subsequence Analysis Asymptotic methods Central limit theorem Decision theory dynamic inventory management Dynamic programming Inventory control Markov analysis Markov decision problem Markov processes nonhomogeneous Markov chain Optimization techniques sequential decision Studies Theorems |
title | A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Central%20Limit%20Theorem%20for%20Temporally%20Nonhomogenous%20Markov%20Chains%20with%20Applications%20to%20Dynamic%20Programming&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Arlotto,%20Alessandro&rft.date=2016-11&rft.volume=41&rft.issue=4&rft.spage=1448&rft.epage=1468&rft.pages=1448-1468&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.2016.0784&rft_dat=%3Cgale_proqu%3EA470229905%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849631426&rft_id=info:pmid/&rft_galeid=A470229905&rft_jstor_id=26179993&rfr_iscdi=true |