A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming

We prove a central limit theorem for a class of additive processes that arise naturally in the theory of finite horizon Markov decision problems. The main theorem generalizes a classic result of Dobrushin for temporally nonhomogeneous Markov chains, and the principal innovation is that here the summ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2016-11, Vol.41 (4), p.1448-1468
Hauptverfasser: Arlotto, Alessandro, Steele, J. Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1468
container_issue 4
container_start_page 1448
container_title Mathematics of operations research
container_volume 41
creator Arlotto, Alessandro
Steele, J. Michael
description We prove a central limit theorem for a class of additive processes that arise naturally in the theory of finite horizon Markov decision problems. The main theorem generalizes a classic result of Dobrushin for temporally nonhomogeneous Markov chains, and the principal innovation is that here the summands are permitted to depend on both the current state and a bounded number of future states of the chain. We show through several examples that this added flexibility gives one a direct path to asymptotic normality of the optimal total reward of finite horizon Markov decision problems. The same examples also explain why such results are not easily obtained by alternative Markovian techniques such as enlargement of the state space.
doi_str_mv 10.1287/moor.2016.0784
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_incontextgauss_ISR_A470229905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470229905</galeid><jstor_id>26179993</jstor_id><sourcerecordid>A470229905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-f58beed73e06186bdf7c27c775e22deb5b9d883055207e917bd307478d71e03b3</originalsourceid><addsrcrecordid>eNqFkt2L1DAUxYsoOK6--hwQBcGOSdo07eMw6rowfqAj-BbS9rbN7CTpJqk6__2mjLA7MCKBBO79nZtwcpLkOcFLQkv-VlvrlhSTYol5mT9IFoTRImU5Jw-TBc6KPOUF-_k4eeL9DmPCOMkXyfUKrcEEJ_doo7QKaDuAdaBRZx3agh5tbO0P6LM1g9W2B2Mnjz5Jd21_ofUglfHotwoDWo3jXjUyKBsrwaJ3ByO1atBXZ3sntVamf5o86uTew7O_50Xy48P77fpjuvlyebVebdKG5TSkHStrgJZngAtSFnXb8YbyhnMGlLZQs7pqyzLDjFHMoSK8bjPMc162nADO6uwieXGcOzp7M4EPYmcnZ-KVgpR5VWQkp8Ud1cs9CGU6G11otPKNWOUcU1pVmEUqPUNFGyD6Yg10KpZP-OUZPq4WohtnBa9OBJEJ8Cf0cvJenIKv_w1eff92yr65x9aTVwZ83Lzqh-CPknOPbpz13kEnRqe0dAdBsJizJeZsiTlbYs5WFLw8CnY-xMY9msavELQgvKqq7M692Qin_f_m3gILytnL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849631426</pqid></control><display><type>article</type><title>A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming</title><source>Informs</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Arlotto, Alessandro ; Steele, J. Michael</creator><creatorcontrib>Arlotto, Alessandro ; Steele, J. Michael</creatorcontrib><description>We prove a central limit theorem for a class of additive processes that arise naturally in the theory of finite horizon Markov decision problems. The main theorem generalizes a classic result of Dobrushin for temporally nonhomogeneous Markov chains, and the principal innovation is that here the summands are permitted to depend on both the current state and a bounded number of future states of the chain. We show through several examples that this added flexibility gives one a direct path to asymptotic normality of the optimal total reward of finite horizon Markov decision problems. The same examples also explain why such results are not easily obtained by alternative Markovian techniques such as enlargement of the state space.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.2016.0784</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>alternating subsequence ; Analysis ; Asymptotic methods ; Central limit theorem ; Decision theory ; dynamic inventory management ; Dynamic programming ; Inventory control ; Markov analysis ; Markov decision problem ; Markov processes ; nonhomogeneous Markov chain ; Optimization techniques ; sequential decision ; Studies ; Theorems</subject><ispartof>Mathematics of operations research, 2016-11, Vol.41 (4), p.1448-1468</ispartof><rights>Copyright 2016, Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2016 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Nov 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-f58beed73e06186bdf7c27c775e22deb5b9d883055207e917bd307478d71e03b3</citedby><cites>FETCH-LOGICAL-c542t-f58beed73e06186bdf7c27c775e22deb5b9d883055207e917bd307478d71e03b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26179993$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.2016.0784$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,832,3692,27924,27925,58017,58021,58250,58254,62616</link.rule.ids></links><search><creatorcontrib>Arlotto, Alessandro</creatorcontrib><creatorcontrib>Steele, J. Michael</creatorcontrib><title>A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming</title><title>Mathematics of operations research</title><description>We prove a central limit theorem for a class of additive processes that arise naturally in the theory of finite horizon Markov decision problems. The main theorem generalizes a classic result of Dobrushin for temporally nonhomogeneous Markov chains, and the principal innovation is that here the summands are permitted to depend on both the current state and a bounded number of future states of the chain. We show through several examples that this added flexibility gives one a direct path to asymptotic normality of the optimal total reward of finite horizon Markov decision problems. The same examples also explain why such results are not easily obtained by alternative Markovian techniques such as enlargement of the state space.</description><subject>alternating subsequence</subject><subject>Analysis</subject><subject>Asymptotic methods</subject><subject>Central limit theorem</subject><subject>Decision theory</subject><subject>dynamic inventory management</subject><subject>Dynamic programming</subject><subject>Inventory control</subject><subject>Markov analysis</subject><subject>Markov decision problem</subject><subject>Markov processes</subject><subject>nonhomogeneous Markov chain</subject><subject>Optimization techniques</subject><subject>sequential decision</subject><subject>Studies</subject><subject>Theorems</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkt2L1DAUxYsoOK6--hwQBcGOSdo07eMw6rowfqAj-BbS9rbN7CTpJqk6__2mjLA7MCKBBO79nZtwcpLkOcFLQkv-VlvrlhSTYol5mT9IFoTRImU5Jw-TBc6KPOUF-_k4eeL9DmPCOMkXyfUKrcEEJ_doo7QKaDuAdaBRZx3agh5tbO0P6LM1g9W2B2Mnjz5Jd21_ofUglfHotwoDWo3jXjUyKBsrwaJ3ByO1atBXZ3sntVamf5o86uTew7O_50Xy48P77fpjuvlyebVebdKG5TSkHStrgJZngAtSFnXb8YbyhnMGlLZQs7pqyzLDjFHMoSK8bjPMc162nADO6uwieXGcOzp7M4EPYmcnZ-KVgpR5VWQkp8Ud1cs9CGU6G11otPKNWOUcU1pVmEUqPUNFGyD6Yg10KpZP-OUZPq4WohtnBa9OBJEJ8Cf0cvJenIKv_w1eff92yr65x9aTVwZ83Lzqh-CPknOPbpz13kEnRqe0dAdBsJizJeZsiTlbYs5WFLw8CnY-xMY9msavELQgvKqq7M692Qin_f_m3gILytnL</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Arlotto, Alessandro</creator><creator>Steele, J. Michael</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>JQ2</scope></search><sort><creationdate>201611</creationdate><title>A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming</title><author>Arlotto, Alessandro ; Steele, J. Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-f58beed73e06186bdf7c27c775e22deb5b9d883055207e917bd307478d71e03b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>alternating subsequence</topic><topic>Analysis</topic><topic>Asymptotic methods</topic><topic>Central limit theorem</topic><topic>Decision theory</topic><topic>dynamic inventory management</topic><topic>Dynamic programming</topic><topic>Inventory control</topic><topic>Markov analysis</topic><topic>Markov decision problem</topic><topic>Markov processes</topic><topic>nonhomogeneous Markov chain</topic><topic>Optimization techniques</topic><topic>sequential decision</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arlotto, Alessandro</creatorcontrib><creatorcontrib>Steele, J. Michael</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arlotto, Alessandro</au><au>Steele, J. Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming</atitle><jtitle>Mathematics of operations research</jtitle><date>2016-11</date><risdate>2016</risdate><volume>41</volume><issue>4</issue><spage>1448</spage><epage>1468</epage><pages>1448-1468</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>We prove a central limit theorem for a class of additive processes that arise naturally in the theory of finite horizon Markov decision problems. The main theorem generalizes a classic result of Dobrushin for temporally nonhomogeneous Markov chains, and the principal innovation is that here the summands are permitted to depend on both the current state and a bounded number of future states of the chain. We show through several examples that this added flexibility gives one a direct path to asymptotic normality of the optimal total reward of finite horizon Markov decision problems. The same examples also explain why such results are not easily obtained by alternative Markovian techniques such as enlargement of the state space.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.2016.0784</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-765X
ispartof Mathematics of operations research, 2016-11, Vol.41 (4), p.1448-1468
issn 0364-765X
1526-5471
language eng
recordid cdi_gale_incontextgauss_ISR_A470229905
source Informs; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects alternating subsequence
Analysis
Asymptotic methods
Central limit theorem
Decision theory
dynamic inventory management
Dynamic programming
Inventory control
Markov analysis
Markov decision problem
Markov processes
nonhomogeneous Markov chain
Optimization techniques
sequential decision
Studies
Theorems
title A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Central%20Limit%20Theorem%20for%20Temporally%20Nonhomogenous%20Markov%20Chains%20with%20Applications%20to%20Dynamic%20Programming&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Arlotto,%20Alessandro&rft.date=2016-11&rft.volume=41&rft.issue=4&rft.spage=1448&rft.epage=1468&rft.pages=1448-1468&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.2016.0784&rft_dat=%3Cgale_proqu%3EA470229905%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849631426&rft_id=info:pmid/&rft_galeid=A470229905&rft_jstor_id=26179993&rfr_iscdi=true