A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells

Author summaryWe develop a method for estimating and modelling transcriptional processes in living tissue samples using a model which approximates the end product of a series of complex chemical interactions using a density function-and thus is amenable to parameter estimation-but can realistically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-12, Vol.17 (12), p.e1009698-e1009698, Article 1009698
Hauptverfasser: Unosson, Mans, Brancaccio, Marco, Hastings, Michael, Johansen, Adam M., Finkenstadt, Barbel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009698
container_issue 12
container_start_page e1009698
container_title PLoS computational biology
container_volume 17
creator Unosson, Mans
Brancaccio, Marco
Hastings, Michael
Johansen, Adam M.
Finkenstadt, Barbel
description Author summaryWe develop a method for estimating and modelling transcriptional processes in living tissue samples using a model which approximates the end product of a series of complex chemical interactions using a density function-and thus is amenable to parameter estimation-but can realistically account for the intrinsic noise and rhythm generation inherent in the single-cell. The model incorporates a form of dependence between nearby cells using a spatial prior distribution over the parameters. The model thus describes the cyclical behaviour of the production of the population of some molecular species within cells, along with the spatial variation of the process across a network of cells. This approach is suitable for modelling circadian gene expression in the suprachiasmatic nucleus (SCN), the region of the brain which is responsible for the 'circadian master clock' which coordinates the bodies daily rhythms. This model is applied to three sample tissues from mice SCN. Based on the inferred dynamic behaviour of the cells, we are able to divide the organ into two regions: a central core in which the rhythm is intrinsic and resilient and the more entrainable outer region which is much more heavily influenced by external stimuli. The findings highlight a trade-off between resilient cyclic behaviour and ability to adapt to environmental cues. We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in
doi_str_mv 10.1371/journal.pcbi.1009698
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_incontextgauss_ISN_A688939393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A688939393</galeid><doaj_id>oai_doaj_org_article_eae03cd6a6c74bd89a455f305ca97d51</doaj_id><sourcerecordid>A688939393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-8ecb1588e6170821dfa3ff3b5ddd5a67adb0b6cfc016af41b1c6db4be918a013</originalsourceid><addsrcrecordid>eNqVks2O0zAUhSMEYoaBN0AoEhsQarGb2ElmgTSq-Kk0AgSzYGfd2DcdF8cOtjMwr8OT4rSlohILkBdxbr5zZJ-cLHtMyZwWFX25caO3YOaDbPWcEtLwpr6TnVLGillVsPruYV9-OckehLAhJI0bfj87KcqGNqzkp9nPizwMELWbRewH58HkvVNo8uhyjzeY3l2Q2hiIzufDNVoXbwcMubYJNChHAz6Xxsmv4Tz_CB56jOhzDFH3k6_N0YxSK4hJJLWXoDTYfI0W8-jBBun1sOXUrYVey6110HZtcCbRmPAwu9eBCfho_zzLrt68vlq-m11-eLtaXlzOJCdNnNUoW8rqGjmtSL2gqoOi64qWKaUY8ApUS1ouO0koh66kLZVctWWLDa2B0OIsW-1slYONGHw6vr8VDrTYDpxfC_BRS4MCAUkhFQcuq7JVdQMlY11BmISmUmzyerXzGsa2RyXRpquaI9PjL1Zfi7W7EXVFm_TDksGzvYF338YUpuh1mNIAi24MYsEp5TzddJHQpzt0Delo2nYuOcoJFxe8rptiWoma_4VKS2HK3FnsdJofCZ4fCRIT8UdcwxiCWH3-9B_s-2O23LHSuxA8dodUKBFTscW-2GIqttgXO8me_JnoQfS7yQmod8B3bF2XKotW4gEjhFQFLRllaUcWSx233Vy60cYkffHv0uIXnWYczQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611666172</pqid></control><display><type>article</type><title>A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Unosson, Mans ; Brancaccio, Marco ; Hastings, Michael ; Johansen, Adam M. ; Finkenstadt, Barbel</creator><contributor>Csikász-Nagy, Attila</contributor><creatorcontrib>Unosson, Mans ; Brancaccio, Marco ; Hastings, Michael ; Johansen, Adam M. ; Finkenstadt, Barbel ; Csikász-Nagy, Attila</creatorcontrib><description>Author summaryWe develop a method for estimating and modelling transcriptional processes in living tissue samples using a model which approximates the end product of a series of complex chemical interactions using a density function-and thus is amenable to parameter estimation-but can realistically account for the intrinsic noise and rhythm generation inherent in the single-cell. The model incorporates a form of dependence between nearby cells using a spatial prior distribution over the parameters. The model thus describes the cyclical behaviour of the production of the population of some molecular species within cells, along with the spatial variation of the process across a network of cells. This approach is suitable for modelling circadian gene expression in the suprachiasmatic nucleus (SCN), the region of the brain which is responsible for the 'circadian master clock' which coordinates the bodies daily rhythms. This model is applied to three sample tissues from mice SCN. Based on the inferred dynamic behaviour of the cells, we are able to divide the organ into two regions: a central core in which the rhythm is intrinsic and resilient and the more entrainable outer region which is much more heavily influenced by external stimuli. The findings highlight a trade-off between resilient cyclic behaviour and ability to adapt to environmental cues. We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in a more distributed versus a more direct manner, which affects the cells' ability to phase-shift to new schedules. We show how insight into the spatio-temporal characteristics of the circadian feedback loop in the suprachiasmatic nucleus (SCN) can be gained by applying the methodology to bioluminescence-reported expression of the circadian core clock gene Cry1 across mouse SCN tissue. We find that while (almost) all SCN neurons exhibit robust cell-autonomous oscillations, the parameters that are associated with the regulatory transcription profile give rise to a spatial division of the tissue between the central region whose oscillations are resilient to perturbation in the sense that they maintain a high degree of synchronicity, and the dorsal region which appears to phase shift in a more diversified way as a response to large perturbations and thus could be more amenable to entrainment.</description><identifier>ISSN: 1553-734X</identifier><identifier>ISSN: 1553-7358</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009698</identifier><identifier>PMID: 34919546</identifier><language>eng</language><publisher>SAN FRANCISCO: Public Library Science</publisher><subject>Animals ; Biochemical Research Methods ; Biochemistry &amp; Molecular Biology ; Biology and Life Sciences ; Circadian Clocks - genetics ; Circadian Rhythm Signaling Peptides and Proteins - genetics ; Circadian Rhythm Signaling Peptides and Proteins - metabolism ; Circadian rhythms ; Cryptochromes - genetics ; Cryptochromes - metabolism ; Feedback loops (Systems theory) ; Gene Expression Regulation - genetics ; Genetic aspects ; Genetic research ; Genetic transcription ; Life Sciences &amp; Biomedicine ; Mathematical &amp; Computational Biology ; Mice ; Models, Biological ; Molecular dynamics ; Phenotype ; Physical Sciences ; Research and Analysis Methods ; Science &amp; Technology ; Single-Cell Analysis ; Statistical models ; Stochastic Processes ; Suprachiasmatic Nucleus - cytology ; Suprachiasmatic Nucleus - metabolism ; Transcription, Genetic - genetics</subject><ispartof>PLoS computational biology, 2021-12, Vol.17 (12), p.e1009698-e1009698, Article 1009698</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Unosson et al 2021 Unosson et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000731451500002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c609t-8ecb1588e6170821dfa3ff3b5ddd5a67adb0b6cfc016af41b1c6db4be918a013</citedby><cites>FETCH-LOGICAL-c609t-8ecb1588e6170821dfa3ff3b5ddd5a67adb0b6cfc016af41b1c6db4be918a013</cites><orcidid>0000-0001-8576-6651 ; 0000-0002-3531-7628 ; 0000-0001-8053-5221 ; 0000-0001-6649-2288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719734/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719734/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,2929,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34919546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Csikász-Nagy, Attila</contributor><creatorcontrib>Unosson, Mans</creatorcontrib><creatorcontrib>Brancaccio, Marco</creatorcontrib><creatorcontrib>Hastings, Michael</creatorcontrib><creatorcontrib>Johansen, Adam M.</creatorcontrib><creatorcontrib>Finkenstadt, Barbel</creatorcontrib><title>A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells</title><title>PLoS computational biology</title><addtitle>PLOS COMPUT BIOL</addtitle><addtitle>PLoS Comput Biol</addtitle><description>Author summaryWe develop a method for estimating and modelling transcriptional processes in living tissue samples using a model which approximates the end product of a series of complex chemical interactions using a density function-and thus is amenable to parameter estimation-but can realistically account for the intrinsic noise and rhythm generation inherent in the single-cell. The model incorporates a form of dependence between nearby cells using a spatial prior distribution over the parameters. The model thus describes the cyclical behaviour of the production of the population of some molecular species within cells, along with the spatial variation of the process across a network of cells. This approach is suitable for modelling circadian gene expression in the suprachiasmatic nucleus (SCN), the region of the brain which is responsible for the 'circadian master clock' which coordinates the bodies daily rhythms. This model is applied to three sample tissues from mice SCN. Based on the inferred dynamic behaviour of the cells, we are able to divide the organ into two regions: a central core in which the rhythm is intrinsic and resilient and the more entrainable outer region which is much more heavily influenced by external stimuli. The findings highlight a trade-off between resilient cyclic behaviour and ability to adapt to environmental cues. We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in a more distributed versus a more direct manner, which affects the cells' ability to phase-shift to new schedules. We show how insight into the spatio-temporal characteristics of the circadian feedback loop in the suprachiasmatic nucleus (SCN) can be gained by applying the methodology to bioluminescence-reported expression of the circadian core clock gene Cry1 across mouse SCN tissue. We find that while (almost) all SCN neurons exhibit robust cell-autonomous oscillations, the parameters that are associated with the regulatory transcription profile give rise to a spatial division of the tissue between the central region whose oscillations are resilient to perturbation in the sense that they maintain a high degree of synchronicity, and the dorsal region which appears to phase shift in a more diversified way as a response to large perturbations and thus could be more amenable to entrainment.</description><subject>Animals</subject><subject>Biochemical Research Methods</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biology and Life Sciences</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - metabolism</subject><subject>Circadian rhythms</subject><subject>Cryptochromes - genetics</subject><subject>Cryptochromes - metabolism</subject><subject>Feedback loops (Systems theory)</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetic transcription</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mathematical &amp; Computational Biology</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Molecular dynamics</subject><subject>Phenotype</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Science &amp; Technology</subject><subject>Single-Cell Analysis</subject><subject>Statistical models</subject><subject>Stochastic Processes</subject><subject>Suprachiasmatic Nucleus - cytology</subject><subject>Suprachiasmatic Nucleus - metabolism</subject><subject>Transcription, Genetic - genetics</subject><issn>1553-734X</issn><issn>1553-7358</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVks2O0zAUhSMEYoaBN0AoEhsQarGb2ElmgTSq-Kk0AgSzYGfd2DcdF8cOtjMwr8OT4rSlohILkBdxbr5zZJ-cLHtMyZwWFX25caO3YOaDbPWcEtLwpr6TnVLGillVsPruYV9-OckehLAhJI0bfj87KcqGNqzkp9nPizwMELWbRewH58HkvVNo8uhyjzeY3l2Q2hiIzufDNVoXbwcMubYJNChHAz6Xxsmv4Tz_CB56jOhzDFH3k6_N0YxSK4hJJLWXoDTYfI0W8-jBBun1sOXUrYVey6110HZtcCbRmPAwu9eBCfho_zzLrt68vlq-m11-eLtaXlzOJCdNnNUoW8rqGjmtSL2gqoOi64qWKaUY8ApUS1ouO0koh66kLZVctWWLDa2B0OIsW-1slYONGHw6vr8VDrTYDpxfC_BRS4MCAUkhFQcuq7JVdQMlY11BmISmUmzyerXzGsa2RyXRpquaI9PjL1Zfi7W7EXVFm_TDksGzvYF338YUpuh1mNIAi24MYsEp5TzddJHQpzt0Delo2nYuOcoJFxe8rptiWoma_4VKS2HK3FnsdJofCZ4fCRIT8UdcwxiCWH3-9B_s-2O23LHSuxA8dodUKBFTscW-2GIqttgXO8me_JnoQfS7yQmod8B3bF2XKotW4gEjhFQFLRllaUcWSx233Vy60cYkffHv0uIXnWYczQ</recordid><startdate>20211217</startdate><enddate>20211217</enddate><creator>Unosson, Mans</creator><creator>Brancaccio, Marco</creator><creator>Hastings, Michael</creator><creator>Johansen, Adam M.</creator><creator>Finkenstadt, Barbel</creator><general>Public Library Science</general><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8576-6651</orcidid><orcidid>https://orcid.org/0000-0002-3531-7628</orcidid><orcidid>https://orcid.org/0000-0001-8053-5221</orcidid><orcidid>https://orcid.org/0000-0001-6649-2288</orcidid></search><sort><creationdate>20211217</creationdate><title>A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells</title><author>Unosson, Mans ; Brancaccio, Marco ; Hastings, Michael ; Johansen, Adam M. ; Finkenstadt, Barbel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-8ecb1588e6170821dfa3ff3b5ddd5a67adb0b6cfc016af41b1c6db4be918a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biochemical Research Methods</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biology and Life Sciences</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - metabolism</topic><topic>Circadian rhythms</topic><topic>Cryptochromes - genetics</topic><topic>Cryptochromes - metabolism</topic><topic>Feedback loops (Systems theory)</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetic transcription</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mathematical &amp; Computational Biology</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Molecular dynamics</topic><topic>Phenotype</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Science &amp; Technology</topic><topic>Single-Cell Analysis</topic><topic>Statistical models</topic><topic>Stochastic Processes</topic><topic>Suprachiasmatic Nucleus - cytology</topic><topic>Suprachiasmatic Nucleus - metabolism</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unosson, Mans</creatorcontrib><creatorcontrib>Brancaccio, Marco</creatorcontrib><creatorcontrib>Hastings, Michael</creatorcontrib><creatorcontrib>Johansen, Adam M.</creatorcontrib><creatorcontrib>Finkenstadt, Barbel</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unosson, Mans</au><au>Brancaccio, Marco</au><au>Hastings, Michael</au><au>Johansen, Adam M.</au><au>Finkenstadt, Barbel</au><au>Csikász-Nagy, Attila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells</atitle><jtitle>PLoS computational biology</jtitle><stitle>PLOS COMPUT BIOL</stitle><addtitle>PLoS Comput Biol</addtitle><date>2021-12-17</date><risdate>2021</risdate><volume>17</volume><issue>12</issue><spage>e1009698</spage><epage>e1009698</epage><pages>e1009698-e1009698</pages><artnum>1009698</artnum><issn>1553-734X</issn><issn>1553-7358</issn><eissn>1553-7358</eissn><abstract>Author summaryWe develop a method for estimating and modelling transcriptional processes in living tissue samples using a model which approximates the end product of a series of complex chemical interactions using a density function-and thus is amenable to parameter estimation-but can realistically account for the intrinsic noise and rhythm generation inherent in the single-cell. The model incorporates a form of dependence between nearby cells using a spatial prior distribution over the parameters. The model thus describes the cyclical behaviour of the production of the population of some molecular species within cells, along with the spatial variation of the process across a network of cells. This approach is suitable for modelling circadian gene expression in the suprachiasmatic nucleus (SCN), the region of the brain which is responsible for the 'circadian master clock' which coordinates the bodies daily rhythms. This model is applied to three sample tissues from mice SCN. Based on the inferred dynamic behaviour of the cells, we are able to divide the organ into two regions: a central core in which the rhythm is intrinsic and resilient and the more entrainable outer region which is much more heavily influenced by external stimuli. The findings highlight a trade-off between resilient cyclic behaviour and ability to adapt to environmental cues. We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in a more distributed versus a more direct manner, which affects the cells' ability to phase-shift to new schedules. We show how insight into the spatio-temporal characteristics of the circadian feedback loop in the suprachiasmatic nucleus (SCN) can be gained by applying the methodology to bioluminescence-reported expression of the circadian core clock gene Cry1 across mouse SCN tissue. We find that while (almost) all SCN neurons exhibit robust cell-autonomous oscillations, the parameters that are associated with the regulatory transcription profile give rise to a spatial division of the tissue between the central region whose oscillations are resilient to perturbation in the sense that they maintain a high degree of synchronicity, and the dorsal region which appears to phase shift in a more diversified way as a response to large perturbations and thus could be more amenable to entrainment.</abstract><cop>SAN FRANCISCO</cop><pub>Public Library Science</pub><pmid>34919546</pmid><doi>10.1371/journal.pcbi.1009698</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8576-6651</orcidid><orcidid>https://orcid.org/0000-0002-3531-7628</orcidid><orcidid>https://orcid.org/0000-0001-8053-5221</orcidid><orcidid>https://orcid.org/0000-0001-6649-2288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-734X
ispartof PLoS computational biology, 2021-12, Vol.17 (12), p.e1009698-e1009698, Article 1009698
issn 1553-734X
1553-7358
1553-7358
language eng
recordid cdi_gale_incontextgauss_ISN_A688939393
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Animals
Biochemical Research Methods
Biochemistry & Molecular Biology
Biology and Life Sciences
Circadian Clocks - genetics
Circadian Rhythm Signaling Peptides and Proteins - genetics
Circadian Rhythm Signaling Peptides and Proteins - metabolism
Circadian rhythms
Cryptochromes - genetics
Cryptochromes - metabolism
Feedback loops (Systems theory)
Gene Expression Regulation - genetics
Genetic aspects
Genetic research
Genetic transcription
Life Sciences & Biomedicine
Mathematical & Computational Biology
Mice
Models, Biological
Molecular dynamics
Phenotype
Physical Sciences
Research and Analysis Methods
Science & Technology
Single-Cell Analysis
Statistical models
Stochastic Processes
Suprachiasmatic Nucleus - cytology
Suprachiasmatic Nucleus - metabolism
Transcription, Genetic - genetics
title A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spatio-temporal%20model%20to%20reveal%20oscillator%20phenotypes%20in%20molecular%20clocks:%20Parameter%20estimation%20elucidates%20circadian%20gene%20transcription%20dynamics%20in%20single-cells&rft.jtitle=PLoS%20computational%20biology&rft.au=Unosson,%20Mans&rft.date=2021-12-17&rft.volume=17&rft.issue=12&rft.spage=e1009698&rft.epage=e1009698&rft.pages=e1009698-e1009698&rft.artnum=1009698&rft.issn=1553-734X&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009698&rft_dat=%3Cgale_cross%3EA688939393%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611666172&rft_id=info:pmid/34919546&rft_galeid=A688939393&rft_doaj_id=oai_doaj_org_article_eae03cd6a6c74bd89a455f305ca97d51&rfr_iscdi=true