A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells
Author summaryWe develop a method for estimating and modelling transcriptional processes in living tissue samples using a model which approximates the end product of a series of complex chemical interactions using a density function-and thus is amenable to parameter estimation-but can realistically...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-12, Vol.17 (12), p.e1009698-e1009698, Article 1009698 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009698 |
---|---|
container_issue | 12 |
container_start_page | e1009698 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Unosson, Mans Brancaccio, Marco Hastings, Michael Johansen, Adam M. Finkenstadt, Barbel |
description | Author summaryWe develop a method for estimating and modelling transcriptional processes in living tissue samples using a model which approximates the end product of a series of complex chemical interactions using a density function-and thus is amenable to parameter estimation-but can realistically account for the intrinsic noise and rhythm generation inherent in the single-cell. The model incorporates a form of dependence between nearby cells using a spatial prior distribution over the parameters. The model thus describes the cyclical behaviour of the production of the population of some molecular species within cells, along with the spatial variation of the process across a network of cells. This approach is suitable for modelling circadian gene expression in the suprachiasmatic nucleus (SCN), the region of the brain which is responsible for the 'circadian master clock' which coordinates the bodies daily rhythms. This model is applied to three sample tissues from mice SCN. Based on the inferred dynamic behaviour of the cells, we are able to divide the organ into two regions: a central core in which the rhythm is intrinsic and resilient and the more entrainable outer region which is much more heavily influenced by external stimuli. The findings highlight a trade-off between resilient cyclic behaviour and ability to adapt to environmental cues.
We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in |
doi_str_mv | 10.1371/journal.pcbi.1009698 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_incontextgauss_ISN_A688939393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A688939393</galeid><doaj_id>oai_doaj_org_article_eae03cd6a6c74bd89a455f305ca97d51</doaj_id><sourcerecordid>A688939393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-8ecb1588e6170821dfa3ff3b5ddd5a67adb0b6cfc016af41b1c6db4be918a013</originalsourceid><addsrcrecordid>eNqVks2O0zAUhSMEYoaBN0AoEhsQarGb2ElmgTSq-Kk0AgSzYGfd2DcdF8cOtjMwr8OT4rSlohILkBdxbr5zZJ-cLHtMyZwWFX25caO3YOaDbPWcEtLwpr6TnVLGillVsPruYV9-OckehLAhJI0bfj87KcqGNqzkp9nPizwMELWbRewH58HkvVNo8uhyjzeY3l2Q2hiIzufDNVoXbwcMubYJNChHAz6Xxsmv4Tz_CB56jOhzDFH3k6_N0YxSK4hJJLWXoDTYfI0W8-jBBun1sOXUrYVey6110HZtcCbRmPAwu9eBCfho_zzLrt68vlq-m11-eLtaXlzOJCdNnNUoW8rqGjmtSL2gqoOi64qWKaUY8ApUS1ouO0koh66kLZVctWWLDa2B0OIsW-1slYONGHw6vr8VDrTYDpxfC_BRS4MCAUkhFQcuq7JVdQMlY11BmISmUmzyerXzGsa2RyXRpquaI9PjL1Zfi7W7EXVFm_TDksGzvYF338YUpuh1mNIAi24MYsEp5TzddJHQpzt0Delo2nYuOcoJFxe8rptiWoma_4VKS2HK3FnsdJofCZ4fCRIT8UdcwxiCWH3-9B_s-2O23LHSuxA8dodUKBFTscW-2GIqttgXO8me_JnoQfS7yQmod8B3bF2XKotW4gEjhFQFLRllaUcWSx233Vy60cYkffHv0uIXnWYczQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611666172</pqid></control><display><type>article</type><title>A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Unosson, Mans ; Brancaccio, Marco ; Hastings, Michael ; Johansen, Adam M. ; Finkenstadt, Barbel</creator><contributor>Csikász-Nagy, Attila</contributor><creatorcontrib>Unosson, Mans ; Brancaccio, Marco ; Hastings, Michael ; Johansen, Adam M. ; Finkenstadt, Barbel ; Csikász-Nagy, Attila</creatorcontrib><description>Author summaryWe develop a method for estimating and modelling transcriptional processes in living tissue samples using a model which approximates the end product of a series of complex chemical interactions using a density function-and thus is amenable to parameter estimation-but can realistically account for the intrinsic noise and rhythm generation inherent in the single-cell. The model incorporates a form of dependence between nearby cells using a spatial prior distribution over the parameters. The model thus describes the cyclical behaviour of the production of the population of some molecular species within cells, along with the spatial variation of the process across a network of cells. This approach is suitable for modelling circadian gene expression in the suprachiasmatic nucleus (SCN), the region of the brain which is responsible for the 'circadian master clock' which coordinates the bodies daily rhythms. This model is applied to three sample tissues from mice SCN. Based on the inferred dynamic behaviour of the cells, we are able to divide the organ into two regions: a central core in which the rhythm is intrinsic and resilient and the more entrainable outer region which is much more heavily influenced by external stimuli. The findings highlight a trade-off between resilient cyclic behaviour and ability to adapt to environmental cues.
We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in a more distributed versus a more direct manner, which affects the cells' ability to phase-shift to new schedules. We show how insight into the spatio-temporal characteristics of the circadian feedback loop in the suprachiasmatic nucleus (SCN) can be gained by applying the methodology to bioluminescence-reported expression of the circadian core clock gene Cry1 across mouse SCN tissue. We find that while (almost) all SCN neurons exhibit robust cell-autonomous oscillations, the parameters that are associated with the regulatory transcription profile give rise to a spatial division of the tissue between the central region whose oscillations are resilient to perturbation in the sense that they maintain a high degree of synchronicity, and the dorsal region which appears to phase shift in a more diversified way as a response to large perturbations and thus could be more amenable to entrainment.</description><identifier>ISSN: 1553-734X</identifier><identifier>ISSN: 1553-7358</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009698</identifier><identifier>PMID: 34919546</identifier><language>eng</language><publisher>SAN FRANCISCO: Public Library Science</publisher><subject>Animals ; Biochemical Research Methods ; Biochemistry & Molecular Biology ; Biology and Life Sciences ; Circadian Clocks - genetics ; Circadian Rhythm Signaling Peptides and Proteins - genetics ; Circadian Rhythm Signaling Peptides and Proteins - metabolism ; Circadian rhythms ; Cryptochromes - genetics ; Cryptochromes - metabolism ; Feedback loops (Systems theory) ; Gene Expression Regulation - genetics ; Genetic aspects ; Genetic research ; Genetic transcription ; Life Sciences & Biomedicine ; Mathematical & Computational Biology ; Mice ; Models, Biological ; Molecular dynamics ; Phenotype ; Physical Sciences ; Research and Analysis Methods ; Science & Technology ; Single-Cell Analysis ; Statistical models ; Stochastic Processes ; Suprachiasmatic Nucleus - cytology ; Suprachiasmatic Nucleus - metabolism ; Transcription, Genetic - genetics</subject><ispartof>PLoS computational biology, 2021-12, Vol.17 (12), p.e1009698-e1009698, Article 1009698</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Unosson et al 2021 Unosson et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000731451500002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c609t-8ecb1588e6170821dfa3ff3b5ddd5a67adb0b6cfc016af41b1c6db4be918a013</citedby><cites>FETCH-LOGICAL-c609t-8ecb1588e6170821dfa3ff3b5ddd5a67adb0b6cfc016af41b1c6db4be918a013</cites><orcidid>0000-0001-8576-6651 ; 0000-0002-3531-7628 ; 0000-0001-8053-5221 ; 0000-0001-6649-2288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719734/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719734/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,2929,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34919546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Csikász-Nagy, Attila</contributor><creatorcontrib>Unosson, Mans</creatorcontrib><creatorcontrib>Brancaccio, Marco</creatorcontrib><creatorcontrib>Hastings, Michael</creatorcontrib><creatorcontrib>Johansen, Adam M.</creatorcontrib><creatorcontrib>Finkenstadt, Barbel</creatorcontrib><title>A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells</title><title>PLoS computational biology</title><addtitle>PLOS COMPUT BIOL</addtitle><addtitle>PLoS Comput Biol</addtitle><description>Author summaryWe develop a method for estimating and modelling transcriptional processes in living tissue samples using a model which approximates the end product of a series of complex chemical interactions using a density function-and thus is amenable to parameter estimation-but can realistically account for the intrinsic noise and rhythm generation inherent in the single-cell. The model incorporates a form of dependence between nearby cells using a spatial prior distribution over the parameters. The model thus describes the cyclical behaviour of the production of the population of some molecular species within cells, along with the spatial variation of the process across a network of cells. This approach is suitable for modelling circadian gene expression in the suprachiasmatic nucleus (SCN), the region of the brain which is responsible for the 'circadian master clock' which coordinates the bodies daily rhythms. This model is applied to three sample tissues from mice SCN. Based on the inferred dynamic behaviour of the cells, we are able to divide the organ into two regions: a central core in which the rhythm is intrinsic and resilient and the more entrainable outer region which is much more heavily influenced by external stimuli. The findings highlight a trade-off between resilient cyclic behaviour and ability to adapt to environmental cues.
We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in a more distributed versus a more direct manner, which affects the cells' ability to phase-shift to new schedules. We show how insight into the spatio-temporal characteristics of the circadian feedback loop in the suprachiasmatic nucleus (SCN) can be gained by applying the methodology to bioluminescence-reported expression of the circadian core clock gene Cry1 across mouse SCN tissue. We find that while (almost) all SCN neurons exhibit robust cell-autonomous oscillations, the parameters that are associated with the regulatory transcription profile give rise to a spatial division of the tissue between the central region whose oscillations are resilient to perturbation in the sense that they maintain a high degree of synchronicity, and the dorsal region which appears to phase shift in a more diversified way as a response to large perturbations and thus could be more amenable to entrainment.</description><subject>Animals</subject><subject>Biochemical Research Methods</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biology and Life Sciences</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - metabolism</subject><subject>Circadian rhythms</subject><subject>Cryptochromes - genetics</subject><subject>Cryptochromes - metabolism</subject><subject>Feedback loops (Systems theory)</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetic transcription</subject><subject>Life Sciences & Biomedicine</subject><subject>Mathematical & Computational Biology</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Molecular dynamics</subject><subject>Phenotype</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Science & Technology</subject><subject>Single-Cell Analysis</subject><subject>Statistical models</subject><subject>Stochastic Processes</subject><subject>Suprachiasmatic Nucleus - cytology</subject><subject>Suprachiasmatic Nucleus - metabolism</subject><subject>Transcription, Genetic - genetics</subject><issn>1553-734X</issn><issn>1553-7358</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVks2O0zAUhSMEYoaBN0AoEhsQarGb2ElmgTSq-Kk0AgSzYGfd2DcdF8cOtjMwr8OT4rSlohILkBdxbr5zZJ-cLHtMyZwWFX25caO3YOaDbPWcEtLwpr6TnVLGillVsPruYV9-OckehLAhJI0bfj87KcqGNqzkp9nPizwMELWbRewH58HkvVNo8uhyjzeY3l2Q2hiIzufDNVoXbwcMubYJNChHAz6Xxsmv4Tz_CB56jOhzDFH3k6_N0YxSK4hJJLWXoDTYfI0W8-jBBun1sOXUrYVey6110HZtcCbRmPAwu9eBCfho_zzLrt68vlq-m11-eLtaXlzOJCdNnNUoW8rqGjmtSL2gqoOi64qWKaUY8ApUS1ouO0koh66kLZVctWWLDa2B0OIsW-1slYONGHw6vr8VDrTYDpxfC_BRS4MCAUkhFQcuq7JVdQMlY11BmISmUmzyerXzGsa2RyXRpquaI9PjL1Zfi7W7EXVFm_TDksGzvYF338YUpuh1mNIAi24MYsEp5TzddJHQpzt0Delo2nYuOcoJFxe8rptiWoma_4VKS2HK3FnsdJofCZ4fCRIT8UdcwxiCWH3-9B_s-2O23LHSuxA8dodUKBFTscW-2GIqttgXO8me_JnoQfS7yQmod8B3bF2XKotW4gEjhFQFLRllaUcWSx233Vy60cYkffHv0uIXnWYczQ</recordid><startdate>20211217</startdate><enddate>20211217</enddate><creator>Unosson, Mans</creator><creator>Brancaccio, Marco</creator><creator>Hastings, Michael</creator><creator>Johansen, Adam M.</creator><creator>Finkenstadt, Barbel</creator><general>Public Library Science</general><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8576-6651</orcidid><orcidid>https://orcid.org/0000-0002-3531-7628</orcidid><orcidid>https://orcid.org/0000-0001-8053-5221</orcidid><orcidid>https://orcid.org/0000-0001-6649-2288</orcidid></search><sort><creationdate>20211217</creationdate><title>A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells</title><author>Unosson, Mans ; Brancaccio, Marco ; Hastings, Michael ; Johansen, Adam M. ; Finkenstadt, Barbel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-8ecb1588e6170821dfa3ff3b5ddd5a67adb0b6cfc016af41b1c6db4be918a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biochemical Research Methods</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biology and Life Sciences</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - metabolism</topic><topic>Circadian rhythms</topic><topic>Cryptochromes - genetics</topic><topic>Cryptochromes - metabolism</topic><topic>Feedback loops (Systems theory)</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetic transcription</topic><topic>Life Sciences & Biomedicine</topic><topic>Mathematical & Computational Biology</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Molecular dynamics</topic><topic>Phenotype</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Science & Technology</topic><topic>Single-Cell Analysis</topic><topic>Statistical models</topic><topic>Stochastic Processes</topic><topic>Suprachiasmatic Nucleus - cytology</topic><topic>Suprachiasmatic Nucleus - metabolism</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unosson, Mans</creatorcontrib><creatorcontrib>Brancaccio, Marco</creatorcontrib><creatorcontrib>Hastings, Michael</creatorcontrib><creatorcontrib>Johansen, Adam M.</creatorcontrib><creatorcontrib>Finkenstadt, Barbel</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unosson, Mans</au><au>Brancaccio, Marco</au><au>Hastings, Michael</au><au>Johansen, Adam M.</au><au>Finkenstadt, Barbel</au><au>Csikász-Nagy, Attila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells</atitle><jtitle>PLoS computational biology</jtitle><stitle>PLOS COMPUT BIOL</stitle><addtitle>PLoS Comput Biol</addtitle><date>2021-12-17</date><risdate>2021</risdate><volume>17</volume><issue>12</issue><spage>e1009698</spage><epage>e1009698</epage><pages>e1009698-e1009698</pages><artnum>1009698</artnum><issn>1553-734X</issn><issn>1553-7358</issn><eissn>1553-7358</eissn><abstract>Author summaryWe develop a method for estimating and modelling transcriptional processes in living tissue samples using a model which approximates the end product of a series of complex chemical interactions using a density function-and thus is amenable to parameter estimation-but can realistically account for the intrinsic noise and rhythm generation inherent in the single-cell. The model incorporates a form of dependence between nearby cells using a spatial prior distribution over the parameters. The model thus describes the cyclical behaviour of the production of the population of some molecular species within cells, along with the spatial variation of the process across a network of cells. This approach is suitable for modelling circadian gene expression in the suprachiasmatic nucleus (SCN), the region of the brain which is responsible for the 'circadian master clock' which coordinates the bodies daily rhythms. This model is applied to three sample tissues from mice SCN. Based on the inferred dynamic behaviour of the cells, we are able to divide the organ into two regions: a central core in which the rhythm is intrinsic and resilient and the more entrainable outer region which is much more heavily influenced by external stimuli. The findings highlight a trade-off between resilient cyclic behaviour and ability to adapt to environmental cues.
We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in a more distributed versus a more direct manner, which affects the cells' ability to phase-shift to new schedules. We show how insight into the spatio-temporal characteristics of the circadian feedback loop in the suprachiasmatic nucleus (SCN) can be gained by applying the methodology to bioluminescence-reported expression of the circadian core clock gene Cry1 across mouse SCN tissue. We find that while (almost) all SCN neurons exhibit robust cell-autonomous oscillations, the parameters that are associated with the regulatory transcription profile give rise to a spatial division of the tissue between the central region whose oscillations are resilient to perturbation in the sense that they maintain a high degree of synchronicity, and the dorsal region which appears to phase shift in a more diversified way as a response to large perturbations and thus could be more amenable to entrainment.</abstract><cop>SAN FRANCISCO</cop><pub>Public Library Science</pub><pmid>34919546</pmid><doi>10.1371/journal.pcbi.1009698</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8576-6651</orcidid><orcidid>https://orcid.org/0000-0002-3531-7628</orcidid><orcidid>https://orcid.org/0000-0001-8053-5221</orcidid><orcidid>https://orcid.org/0000-0001-6649-2288</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-734X |
ispartof | PLoS computational biology, 2021-12, Vol.17 (12), p.e1009698-e1009698, Article 1009698 |
issn | 1553-734X 1553-7358 1553-7358 |
language | eng |
recordid | cdi_gale_incontextgauss_ISN_A688939393 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Animals Biochemical Research Methods Biochemistry & Molecular Biology Biology and Life Sciences Circadian Clocks - genetics Circadian Rhythm Signaling Peptides and Proteins - genetics Circadian Rhythm Signaling Peptides and Proteins - metabolism Circadian rhythms Cryptochromes - genetics Cryptochromes - metabolism Feedback loops (Systems theory) Gene Expression Regulation - genetics Genetic aspects Genetic research Genetic transcription Life Sciences & Biomedicine Mathematical & Computational Biology Mice Models, Biological Molecular dynamics Phenotype Physical Sciences Research and Analysis Methods Science & Technology Single-Cell Analysis Statistical models Stochastic Processes Suprachiasmatic Nucleus - cytology Suprachiasmatic Nucleus - metabolism Transcription, Genetic - genetics |
title | A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spatio-temporal%20model%20to%20reveal%20oscillator%20phenotypes%20in%20molecular%20clocks:%20Parameter%20estimation%20elucidates%20circadian%20gene%20transcription%20dynamics%20in%20single-cells&rft.jtitle=PLoS%20computational%20biology&rft.au=Unosson,%20Mans&rft.date=2021-12-17&rft.volume=17&rft.issue=12&rft.spage=e1009698&rft.epage=e1009698&rft.pages=e1009698-e1009698&rft.artnum=1009698&rft.issn=1553-734X&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009698&rft_dat=%3Cgale_cross%3EA688939393%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611666172&rft_id=info:pmid/34919546&rft_galeid=A688939393&rft_doaj_id=oai_doaj_org_article_eae03cd6a6c74bd89a455f305ca97d51&rfr_iscdi=true |