Horizontal transmission and recombination maintain forever young bacterial symbiont genomes
Bacterial symbionts bring a wealth of functions to the associations they participate in, but by doing so, they endanger the genes and genomes underlying these abilities. When bacterial symbionts become obligately associated with their hosts, their genomes are thought to decay towards an organelle-li...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2020-08, Vol.16 (8), p.e1008935-e1008935, Article 1008935 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008935 |
---|---|
container_issue | 8 |
container_start_page | e1008935 |
container_title | PLoS genetics |
container_volume | 16 |
creator | Russell, Shelbi L. Pepper-Tunick, Evan Svedberg, Jesper Byrne, Ashley Castillo, Jennie Ruelas Vollmers, Christopher Beinart, Roxanne A. Corbett-Detig, Russell |
description | Bacterial symbionts bring a wealth of functions to the associations they participate in, but by doing so, they endanger the genes and genomes underlying these abilities. When bacterial symbionts become obligately associated with their hosts, their genomes are thought to decay towards an organelle-like fate due to decreased homologous recombination and inefficient selection. However, numerous associations exist that counter these expectations, especially in marine environments, possibly due to ongoing horizontal gene flow. Despite extensive theoretical treatment, no empirical study thus far has connected these underlying population genetic processes with long-term evolutionary outcomes. By sampling marine chemosynthetic bacterial-bivalve endosymbioses that range from primarily vertical to strictly horizontal transmission, we tested this canonical theory. We found that transmission mode strongly predicts homologous recombination rates, and that exceedingly low recombination rates are associated with moderate genome degradation in the marine symbionts with nearly strict vertical transmission. Nonetheless, even the most degraded marine endosymbiont genomes are occasionally horizontally transmitted and are much larger than their terrestrial insect symbiont counterparts. Therefore, horizontal transmission and recombination enable efficient natural selection to maintain intermediate symbiont genome sizes and substantial functional genetic variation.
Author summary Symbiotic associations between bacteria and eukaryotes are ubiquitous in nature and have contributed to the evolution of radically novel phenotypes and niches for the involved partners. New metabolic or physiological capacities that arise in these associations are typically encoded by the bacterial symbiont genomes. However, the association itself endangers the retention of bacterial genomic coding capacity. Endosymbiont genome evolution theory predicts that when bacterial symbionts become restricted to host tissues, their populations cannot remove deleterious mutations efficiently. This ultimately results in their genomes degrading to small, function-poor states, reminiscent of organellar genomes. However, many ancient marine endosymbionts do not fit this prediction, but instead retain relatively large, gene-rich genomes, indicating that the evolutionary dynamics of this process need more thorough characterization. Here we show that on-going symbiont gene flow via horizontal transmission between bivalv |
doi_str_mv | 10.1371/journal.pgen.1008935 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_gale_incontextgauss_ISN_A634469621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634469621</galeid><doaj_id>oai_doaj_org_article_defc6993f08442e580942384556049d3</doaj_id><sourcerecordid>A634469621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-bd6aff798f33970de10873f0076d0b84e3518790ba045d98e954a81e88c866fb3</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6D0QLgigyY9p8NLkRlkHdgcUFv268CGl6OpOlTcakXR1_velOd5jKXqzkouH0Oe9JzsmbJE8zNM9wkb29dL23qplvVmDnGUJcYHovOc4oxbOCIHL_YH-UPArhEiFMuSgeJkc45yTLMT5Ofpw5b_4426km7byyoTUhGGdTZavUg3ZtaazqhkirTMSMTWvn4Qp8unW9XaWl0h14E_PDNsJRKo0nci2Ex8mDWjUBnozfk-Tbh_dfF2ez84uPy8Xp-UwXOetmZcVUXReC1xiLAlWQIV7gGqGCVajkBDDNeCFQqRChleAgKFE8A841Z6wu8UnyfKe7aVyQY1-CzAnBDDHEeSSWO6Jy6lJuvGmV30qnjLwOOL-SyndGNyArqDUTItbnhORAORIkx5xQyhARFY5a78ZqfdlCpcHGvjUT0ekfa9Zy5a5kQQpMWREFXo0C3v3sIXQy9lxD0ygLrh_OjYeZCTrUevEPevvtRmql4gWMrV2sqwdRecowIUywPIvU_BYqrgpao52F2sT4JOH1JCEyHfzuVqoPQS6_fP4P9tPd2YvvU_blAbsG1XTr4Jp-eJBhCpIdqL0LwUO9H0iG5OCXm87JwS9y9EtMe3Y4zH3SjUEi8GYH_ILS1UEbsBr2GEKIsmgyjuMOkUjzu9ML010baxFt1OG_Jh4vqw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443606088</pqid></control><display><type>article</type><title>Horizontal transmission and recombination maintain forever young bacterial symbiont genomes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Russell, Shelbi L. ; Pepper-Tunick, Evan ; Svedberg, Jesper ; Byrne, Ashley ; Castillo, Jennie Ruelas ; Vollmers, Christopher ; Beinart, Roxanne A. ; Corbett-Detig, Russell</creator><contributor>Didelot, Xavier</contributor><creatorcontrib>Russell, Shelbi L. ; Pepper-Tunick, Evan ; Svedberg, Jesper ; Byrne, Ashley ; Castillo, Jennie Ruelas ; Vollmers, Christopher ; Beinart, Roxanne A. ; Corbett-Detig, Russell ; Didelot, Xavier</creatorcontrib><description>Bacterial symbionts bring a wealth of functions to the associations they participate in, but by doing so, they endanger the genes and genomes underlying these abilities. When bacterial symbionts become obligately associated with their hosts, their genomes are thought to decay towards an organelle-like fate due to decreased homologous recombination and inefficient selection. However, numerous associations exist that counter these expectations, especially in marine environments, possibly due to ongoing horizontal gene flow. Despite extensive theoretical treatment, no empirical study thus far has connected these underlying population genetic processes with long-term evolutionary outcomes. By sampling marine chemosynthetic bacterial-bivalve endosymbioses that range from primarily vertical to strictly horizontal transmission, we tested this canonical theory. We found that transmission mode strongly predicts homologous recombination rates, and that exceedingly low recombination rates are associated with moderate genome degradation in the marine symbionts with nearly strict vertical transmission. Nonetheless, even the most degraded marine endosymbiont genomes are occasionally horizontally transmitted and are much larger than their terrestrial insect symbiont counterparts. Therefore, horizontal transmission and recombination enable efficient natural selection to maintain intermediate symbiont genome sizes and substantial functional genetic variation.
Author summary Symbiotic associations between bacteria and eukaryotes are ubiquitous in nature and have contributed to the evolution of radically novel phenotypes and niches for the involved partners. New metabolic or physiological capacities that arise in these associations are typically encoded by the bacterial symbiont genomes. However, the association itself endangers the retention of bacterial genomic coding capacity. Endosymbiont genome evolution theory predicts that when bacterial symbionts become restricted to host tissues, their populations cannot remove deleterious mutations efficiently. This ultimately results in their genomes degrading to small, function-poor states, reminiscent of organellar genomes. However, many ancient marine endosymbionts do not fit this prediction, but instead retain relatively large, gene-rich genomes, indicating that the evolutionary dynamics of this process need more thorough characterization. Here we show that on-going symbiont gene flow via horizontal transmission between bivalve hosts and recombination among divergent gammaproteobacterial symbiont lineages are sufficient to maintain large and dynamic bacterial symbiont genomes. These findings indicate that many obligately associated symbiont genomes may not be as isolated from one another as previously assumed and are not on a one way path to degradation.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008935</identifier><identifier>PMID: 32841233</identifier><language>eng</language><publisher>SAN FRANCISCO: Public Library Science</publisher><subject>Animals ; Bacteria ; Bacteria - genetics ; Bacteria - pathogenicity ; Biodegradation ; Biology and Life Sciences ; Bivalvia - genetics ; Bivalvia - microbiology ; Developmental biology ; Disease transmission ; Distribution ; Engineering ; Evolution, Molecular ; Gene flow ; Gene Transfer, Horizontal ; Genes ; Genetic aspects ; Genetic diversity ; Genetic recombination ; Genetic Variation ; Genetics & Heredity ; Genome, Bacterial ; Genomes ; Genomics ; Health aspects ; Homologous recombination ; Life Sciences & Biomedicine ; Marine environment ; Microbial genetics ; Mutation ; Natural selection ; Parasites ; Physiological aspects ; Population ; Population genetics ; Recombination, Genetic ; Research and Analysis Methods ; Science & Technology ; Software ; Symbionts ; Symbiosis - genetics</subject><ispartof>PLoS genetics, 2020-08, Vol.16 (8), p.e1008935-e1008935, Article 1008935</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Russell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Russell et al 2020 Russell et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>30</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000565538300004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c726t-bd6aff798f33970de10873f0076d0b84e3518790ba045d98e954a81e88c866fb3</citedby><cites>FETCH-LOGICAL-c726t-bd6aff798f33970de10873f0076d0b84e3518790ba045d98e954a81e88c866fb3</cites><orcidid>0000-0001-6734-2740 ; 0000-0002-2177-924X ; 0000-0002-3841-9099 ; 0000-0002-0951-3019 ; 0000-0003-4570-205X ; 0000-0003-1672-5957 ; 0000-0001-6535-2478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473567/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473567/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,2930,23873,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32841233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Didelot, Xavier</contributor><creatorcontrib>Russell, Shelbi L.</creatorcontrib><creatorcontrib>Pepper-Tunick, Evan</creatorcontrib><creatorcontrib>Svedberg, Jesper</creatorcontrib><creatorcontrib>Byrne, Ashley</creatorcontrib><creatorcontrib>Castillo, Jennie Ruelas</creatorcontrib><creatorcontrib>Vollmers, Christopher</creatorcontrib><creatorcontrib>Beinart, Roxanne A.</creatorcontrib><creatorcontrib>Corbett-Detig, Russell</creatorcontrib><title>Horizontal transmission and recombination maintain forever young bacterial symbiont genomes</title><title>PLoS genetics</title><addtitle>PLOS GENET</addtitle><addtitle>PLoS Genet</addtitle><description>Bacterial symbionts bring a wealth of functions to the associations they participate in, but by doing so, they endanger the genes and genomes underlying these abilities. When bacterial symbionts become obligately associated with their hosts, their genomes are thought to decay towards an organelle-like fate due to decreased homologous recombination and inefficient selection. However, numerous associations exist that counter these expectations, especially in marine environments, possibly due to ongoing horizontal gene flow. Despite extensive theoretical treatment, no empirical study thus far has connected these underlying population genetic processes with long-term evolutionary outcomes. By sampling marine chemosynthetic bacterial-bivalve endosymbioses that range from primarily vertical to strictly horizontal transmission, we tested this canonical theory. We found that transmission mode strongly predicts homologous recombination rates, and that exceedingly low recombination rates are associated with moderate genome degradation in the marine symbionts with nearly strict vertical transmission. Nonetheless, even the most degraded marine endosymbiont genomes are occasionally horizontally transmitted and are much larger than their terrestrial insect symbiont counterparts. Therefore, horizontal transmission and recombination enable efficient natural selection to maintain intermediate symbiont genome sizes and substantial functional genetic variation.
Author summary Symbiotic associations between bacteria and eukaryotes are ubiquitous in nature and have contributed to the evolution of radically novel phenotypes and niches for the involved partners. New metabolic or physiological capacities that arise in these associations are typically encoded by the bacterial symbiont genomes. However, the association itself endangers the retention of bacterial genomic coding capacity. Endosymbiont genome evolution theory predicts that when bacterial symbionts become restricted to host tissues, their populations cannot remove deleterious mutations efficiently. This ultimately results in their genomes degrading to small, function-poor states, reminiscent of organellar genomes. However, many ancient marine endosymbionts do not fit this prediction, but instead retain relatively large, gene-rich genomes, indicating that the evolutionary dynamics of this process need more thorough characterization. Here we show that on-going symbiont gene flow via horizontal transmission between bivalve hosts and recombination among divergent gammaproteobacterial symbiont lineages are sufficient to maintain large and dynamic bacterial symbiont genomes. These findings indicate that many obligately associated symbiont genomes may not be as isolated from one another as previously assumed and are not on a one way path to degradation.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - pathogenicity</subject><subject>Biodegradation</subject><subject>Biology and Life Sciences</subject><subject>Bivalvia - genetics</subject><subject>Bivalvia - microbiology</subject><subject>Developmental biology</subject><subject>Disease transmission</subject><subject>Distribution</subject><subject>Engineering</subject><subject>Evolution, Molecular</subject><subject>Gene flow</subject><subject>Gene Transfer, Horizontal</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic recombination</subject><subject>Genetic Variation</subject><subject>Genetics & Heredity</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Homologous recombination</subject><subject>Life Sciences & Biomedicine</subject><subject>Marine environment</subject><subject>Microbial genetics</subject><subject>Mutation</subject><subject>Natural selection</subject><subject>Parasites</subject><subject>Physiological aspects</subject><subject>Population</subject><subject>Population genetics</subject><subject>Recombination, Genetic</subject><subject>Research and Analysis Methods</subject><subject>Science & Technology</subject><subject>Software</subject><subject>Symbionts</subject><subject>Symbiosis - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6D0QLgigyY9p8NLkRlkHdgcUFv268CGl6OpOlTcakXR1_velOd5jKXqzkouH0Oe9JzsmbJE8zNM9wkb29dL23qplvVmDnGUJcYHovOc4oxbOCIHL_YH-UPArhEiFMuSgeJkc45yTLMT5Ofpw5b_4426km7byyoTUhGGdTZavUg3ZtaazqhkirTMSMTWvn4Qp8unW9XaWl0h14E_PDNsJRKo0nci2Ex8mDWjUBnozfk-Tbh_dfF2ez84uPy8Xp-UwXOetmZcVUXReC1xiLAlWQIV7gGqGCVajkBDDNeCFQqRChleAgKFE8A841Z6wu8UnyfKe7aVyQY1-CzAnBDDHEeSSWO6Jy6lJuvGmV30qnjLwOOL-SyndGNyArqDUTItbnhORAORIkx5xQyhARFY5a78ZqfdlCpcHGvjUT0ekfa9Zy5a5kQQpMWREFXo0C3v3sIXQy9lxD0ygLrh_OjYeZCTrUevEPevvtRmql4gWMrV2sqwdRecowIUywPIvU_BYqrgpao52F2sT4JOH1JCEyHfzuVqoPQS6_fP4P9tPd2YvvU_blAbsG1XTr4Jp-eJBhCpIdqL0LwUO9H0iG5OCXm87JwS9y9EtMe3Y4zH3SjUEi8GYH_ILS1UEbsBr2GEKIsmgyjuMOkUjzu9ML010baxFt1OG_Jh4vqw</recordid><startdate>20200825</startdate><enddate>20200825</enddate><creator>Russell, Shelbi L.</creator><creator>Pepper-Tunick, Evan</creator><creator>Svedberg, Jesper</creator><creator>Byrne, Ashley</creator><creator>Castillo, Jennie Ruelas</creator><creator>Vollmers, Christopher</creator><creator>Beinart, Roxanne A.</creator><creator>Corbett-Detig, Russell</creator><general>Public Library Science</general><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6734-2740</orcidid><orcidid>https://orcid.org/0000-0002-2177-924X</orcidid><orcidid>https://orcid.org/0000-0002-3841-9099</orcidid><orcidid>https://orcid.org/0000-0002-0951-3019</orcidid><orcidid>https://orcid.org/0000-0003-4570-205X</orcidid><orcidid>https://orcid.org/0000-0003-1672-5957</orcidid><orcidid>https://orcid.org/0000-0001-6535-2478</orcidid></search><sort><creationdate>20200825</creationdate><title>Horizontal transmission and recombination maintain forever young bacterial symbiont genomes</title><author>Russell, Shelbi L. ; Pepper-Tunick, Evan ; Svedberg, Jesper ; Byrne, Ashley ; Castillo, Jennie Ruelas ; Vollmers, Christopher ; Beinart, Roxanne A. ; Corbett-Detig, Russell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-bd6aff798f33970de10873f0076d0b84e3518790ba045d98e954a81e88c866fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - pathogenicity</topic><topic>Biodegradation</topic><topic>Biology and Life Sciences</topic><topic>Bivalvia - genetics</topic><topic>Bivalvia - microbiology</topic><topic>Developmental biology</topic><topic>Disease transmission</topic><topic>Distribution</topic><topic>Engineering</topic><topic>Evolution, Molecular</topic><topic>Gene flow</topic><topic>Gene Transfer, Horizontal</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic recombination</topic><topic>Genetic Variation</topic><topic>Genetics & Heredity</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Homologous recombination</topic><topic>Life Sciences & Biomedicine</topic><topic>Marine environment</topic><topic>Microbial genetics</topic><topic>Mutation</topic><topic>Natural selection</topic><topic>Parasites</topic><topic>Physiological aspects</topic><topic>Population</topic><topic>Population genetics</topic><topic>Recombination, Genetic</topic><topic>Research and Analysis Methods</topic><topic>Science & Technology</topic><topic>Software</topic><topic>Symbionts</topic><topic>Symbiosis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russell, Shelbi L.</creatorcontrib><creatorcontrib>Pepper-Tunick, Evan</creatorcontrib><creatorcontrib>Svedberg, Jesper</creatorcontrib><creatorcontrib>Byrne, Ashley</creatorcontrib><creatorcontrib>Castillo, Jennie Ruelas</creatorcontrib><creatorcontrib>Vollmers, Christopher</creatorcontrib><creatorcontrib>Beinart, Roxanne A.</creatorcontrib><creatorcontrib>Corbett-Detig, Russell</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russell, Shelbi L.</au><au>Pepper-Tunick, Evan</au><au>Svedberg, Jesper</au><au>Byrne, Ashley</au><au>Castillo, Jennie Ruelas</au><au>Vollmers, Christopher</au><au>Beinart, Roxanne A.</au><au>Corbett-Detig, Russell</au><au>Didelot, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Horizontal transmission and recombination maintain forever young bacterial symbiont genomes</atitle><jtitle>PLoS genetics</jtitle><stitle>PLOS GENET</stitle><addtitle>PLoS Genet</addtitle><date>2020-08-25</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>e1008935</spage><epage>e1008935</epage><pages>e1008935-e1008935</pages><artnum>1008935</artnum><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Bacterial symbionts bring a wealth of functions to the associations they participate in, but by doing so, they endanger the genes and genomes underlying these abilities. When bacterial symbionts become obligately associated with their hosts, their genomes are thought to decay towards an organelle-like fate due to decreased homologous recombination and inefficient selection. However, numerous associations exist that counter these expectations, especially in marine environments, possibly due to ongoing horizontal gene flow. Despite extensive theoretical treatment, no empirical study thus far has connected these underlying population genetic processes with long-term evolutionary outcomes. By sampling marine chemosynthetic bacterial-bivalve endosymbioses that range from primarily vertical to strictly horizontal transmission, we tested this canonical theory. We found that transmission mode strongly predicts homologous recombination rates, and that exceedingly low recombination rates are associated with moderate genome degradation in the marine symbionts with nearly strict vertical transmission. Nonetheless, even the most degraded marine endosymbiont genomes are occasionally horizontally transmitted and are much larger than their terrestrial insect symbiont counterparts. Therefore, horizontal transmission and recombination enable efficient natural selection to maintain intermediate symbiont genome sizes and substantial functional genetic variation.
Author summary Symbiotic associations between bacteria and eukaryotes are ubiquitous in nature and have contributed to the evolution of radically novel phenotypes and niches for the involved partners. New metabolic or physiological capacities that arise in these associations are typically encoded by the bacterial symbiont genomes. However, the association itself endangers the retention of bacterial genomic coding capacity. Endosymbiont genome evolution theory predicts that when bacterial symbionts become restricted to host tissues, their populations cannot remove deleterious mutations efficiently. This ultimately results in their genomes degrading to small, function-poor states, reminiscent of organellar genomes. However, many ancient marine endosymbionts do not fit this prediction, but instead retain relatively large, gene-rich genomes, indicating that the evolutionary dynamics of this process need more thorough characterization. Here we show that on-going symbiont gene flow via horizontal transmission between bivalve hosts and recombination among divergent gammaproteobacterial symbiont lineages are sufficient to maintain large and dynamic bacterial symbiont genomes. These findings indicate that many obligately associated symbiont genomes may not be as isolated from one another as previously assumed and are not on a one way path to degradation.</abstract><cop>SAN FRANCISCO</cop><pub>Public Library Science</pub><pmid>32841233</pmid><doi>10.1371/journal.pgen.1008935</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-6734-2740</orcidid><orcidid>https://orcid.org/0000-0002-2177-924X</orcidid><orcidid>https://orcid.org/0000-0002-3841-9099</orcidid><orcidid>https://orcid.org/0000-0002-0951-3019</orcidid><orcidid>https://orcid.org/0000-0003-4570-205X</orcidid><orcidid>https://orcid.org/0000-0003-1672-5957</orcidid><orcidid>https://orcid.org/0000-0001-6535-2478</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2020-08, Vol.16 (8), p.e1008935-e1008935, Article 1008935 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_gale_incontextgauss_ISN_A634469621 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Bacteria Bacteria - genetics Bacteria - pathogenicity Biodegradation Biology and Life Sciences Bivalvia - genetics Bivalvia - microbiology Developmental biology Disease transmission Distribution Engineering Evolution, Molecular Gene flow Gene Transfer, Horizontal Genes Genetic aspects Genetic diversity Genetic recombination Genetic Variation Genetics & Heredity Genome, Bacterial Genomes Genomics Health aspects Homologous recombination Life Sciences & Biomedicine Marine environment Microbial genetics Mutation Natural selection Parasites Physiological aspects Population Population genetics Recombination, Genetic Research and Analysis Methods Science & Technology Software Symbionts Symbiosis - genetics |
title | Horizontal transmission and recombination maintain forever young bacterial symbiont genomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Horizontal%20transmission%20and%20recombination%20maintain%20forever%20young%20bacterial%20symbiont%20genomes&rft.jtitle=PLoS%20genetics&rft.au=Russell,%20Shelbi%20L.&rft.date=2020-08-25&rft.volume=16&rft.issue=8&rft.spage=e1008935&rft.epage=e1008935&rft.pages=e1008935-e1008935&rft.artnum=1008935&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008935&rft_dat=%3Cgale_pubme%3EA634469621%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443606088&rft_id=info:pmid/32841233&rft_galeid=A634469621&rft_doaj_id=oai_doaj_org_article_defc6993f08442e580942384556049d3&rfr_iscdi=true |