Viral infection triggers interferon-induced expulsion of live Cryptococcus neoformans by macrophages

Author summary Infectious diseases are typically studied in isolation, but in real life people often encounter multiple infections simultaneously. Here we investigate how the innate immune response to the fatal fungus Cryptococcus neoformans is influenced by viral coinfection. Whilst virally-infecte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2020-02, Vol.16 (2), p.e1008240-e1008240, Article 1008240
Hauptverfasser: Seoane, Paula I., Taylor-Smith, Leanne M., Stirling, David, Bell, Lucy C. K., Noursadeghi, Mahdad, Bailey, Dalan, May, Robin C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Author summary Infectious diseases are typically studied in isolation, but in real life people often encounter multiple infections simultaneously. Here we investigate how the innate immune response to the fatal fungus Cryptococcus neoformans is influenced by viral coinfection. Whilst virally-infected macrophages retain a normal capacity to engulf and kill Cryptococci, they demonstrate a dramatically enhanced propensity to expel them through vomocytosis. Activation of vomocytosis is driven by type-I interferons, generic 'antiviral' molecules, which signal back to the infected macrophage, triggering expulsion of the fungus. We propose that this hitherto unobserved phenomenon represents a 'reprioritisation' pathway for innate immune cells, by which they can alter the frequency with which they expel one pathogen depending on the level of threat from a secondary infection. Cryptococcus neoformans is an opportunistic human pathogen, which causes serious disease in immunocompromised hosts. Infection with this pathogen is particularly relevant in HIV+ patients, where it leads to around 200,000 deaths per annum. A key feature of cryptococcal pathogenesis is the ability of the fungus to survive and replicate within the phagosome of macrophages, as well as its ability to be expelled from host cells via a novel non-lytic mechanism known as vomocytosis. Here we show that cryptococcal vomocytosis from macrophages is strongly enhanced by viral coinfection, without altering phagocytosis or intracellular proliferation of the fungus. This effect occurs with distinct, unrelated human viral pathogens and is recapitulated when macrophages are stimulated with the anti-viral cytokines interferon alpha or beta (IFN alpha or IFN beta). Importantly, the effect is abrogated when type-I interferon signalling is blocked, thus underscoring the importance of type-I interferons in this phenomenon. Lastly, our data help resolve previous, contradictory animal studies on the impact of type I interferons on cryptococcal pathogenesis and suggest that secondary viral stimuli may alter patterns of cryptococcal dissemination in the host.
ISSN:1553-7366
1553-7374
1553-7374
DOI:10.1371/journal.ppat.1008240