Integrated framework for characterization of spatial variability of geological profiles

Despite recent efforts to characterize the uncertainties involved with geological profiles and soil and rock properties, there has been limited study on their spatial correlations and how such features may be included in the engineering decision-making process. This paper presents an integrated fram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian geotechnical journal 2017, Vol.54 (1), p.47-58
Hauptverfasser: Liu, W.F, Leung, Y.F, Lo, M.K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 47
container_title Canadian geotechnical journal
container_volume 54
creator Liu, W.F
Leung, Y.F
Lo, M.K
description Despite recent efforts to characterize the uncertainties involved with geological profiles and soil and rock properties, there has been limited study on their spatial correlations and how such features may be included in the engineering decision-making process. This paper presents an integrated framework for geostatisical analyses, which incorporates the restricted maximum likelihood (REML) method with the Matérn autocovariance model. Statistical tests are conducted including those for data normality, constant variance, and outliers, which ensure the fundamental assumptions of REML are not violated in the residual analyses of site data, meanwhile offering simple checks for potential errors in the dataset. The proposed approach also allows quantification of uncertainties in the subsurface profiles at the unsampled locations. The approach is illustrated through investigations on spatial correlation features of geological profiles at two project sites in Hong Kong. The number of irregularly spaced boreholes varies from 150 to 350 in the two cases, and the large volume of data enables the variations in rockhead levels to be studied through the proposed framework. In addition, the existence of geological faults in one of the sites is found to significantly affect the spatial variability of the rockhead level, as indicated by the reduced scales of fluctuation and spatial dependence, which corresponds to increased uncertainty in areas intersected by faults.
doi_str_mv 10.1139/cgj-2016-0189
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_incontextgauss_ISN_A477203468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477203468</galeid><sourcerecordid>A477203468</sourcerecordid><originalsourceid>FETCH-LOGICAL-a634t-1a7855abd74f698ff3870c2796667b1d43761100d7224824c0a2faa02d358c713</originalsourceid><addsrcrecordid>eNqV0s1rFDEUAPAgCq7Vo_dBL3qY-pLJJJljKbUuFAU_8BjeZpJp1tnJNslq619vhgpaGVDJIY_k914-eIQ8pXBMadO9MsO2ZkBFDVR198iKMlC1AAr3yQqgxI2Q_CF5lNIWgHLO2Ip8Xk_ZDhGz7SsXcWe_hfilciFW5hIjmmyj_47Zh6kKrkr7EuJYfcXoceNHn2_m5cGGMQzelJ19DM6PNj0mDxyOyT75OR-RT6_PPp6-qS_ena9PTy5qFA3PNUWp2hY3veROdMq5RkkwTHZCCLmhPW-koBSgl4xxxbgBZA4RWN-0ykjaHJEXt3XLwVcHm7Le-WTsOOJkwyFpqmTXdQCM_QNtO67KtWShz_-g23CIU3nIrETLgTP6Sw04Wu0nF3L5sbmoPuFSMmi4UEXVC2qwk404hsnO33XXP1vwZu-v9O_oeAGV0dudN4tVX95JKCbb6zzgISW9_vD-P-zbxdeZGFKK1ul99DuMN5qCnrtSl67Uc1fquSuLh1s_RRNtshjN5V9SfgDQeN6-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856540421</pqid></control><display><type>article</type><title>Integrated framework for characterization of spatial variability of geological profiles</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Liu, W.F ; Leung, Y.F ; Lo, M.K</creator><creatorcontrib>Liu, W.F ; Leung, Y.F ; Lo, M.K</creatorcontrib><description>Despite recent efforts to characterize the uncertainties involved with geological profiles and soil and rock properties, there has been limited study on their spatial correlations and how such features may be included in the engineering decision-making process. This paper presents an integrated framework for geostatisical analyses, which incorporates the restricted maximum likelihood (REML) method with the Matérn autocovariance model. Statistical tests are conducted including those for data normality, constant variance, and outliers, which ensure the fundamental assumptions of REML are not violated in the residual analyses of site data, meanwhile offering simple checks for potential errors in the dataset. The proposed approach also allows quantification of uncertainties in the subsurface profiles at the unsampled locations. The approach is illustrated through investigations on spatial correlation features of geological profiles at two project sites in Hong Kong. The number of irregularly spaced boreholes varies from 150 to 350 in the two cases, and the large volume of data enables the variations in rockhead levels to be studied through the proposed framework. In addition, the existence of geological faults in one of the sites is found to significantly affect the spatial variability of the rockhead level, as indicated by the reduced scales of fluctuation and spatial dependence, which corresponds to increased uncertainty in areas intersected by faults.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2016-0189</identifier><identifier>CODEN: CGJOAH</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>analyse résiduelle ; Boreholes ; Borings ; Case studies ; Correlation ; Correlation analysis ; enquête du site ; Geological faults ; Geology ; Geospatial data ; Geotechnics ; Geotechnology ; Matérn covariance structure ; Maximum likelihood method ; méthode vraisemblance maximale restreinte ; residual analysis ; Residual stresses ; restricted maximum likelihood method ; Rock ; Rock properties ; rockhead variation ; site investigation ; structure Matérn covariance ; Uncertainty ; variation de la tête de roche</subject><ispartof>Canadian geotechnical journal, 2017, Vol.54 (1), p.47-58</ispartof><rights>COPYRIGHT 2017 NRC Research Press</rights><rights>Copyright Canadian Science Publishing NRC Research Press Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a634t-1a7855abd74f698ff3870c2796667b1d43761100d7224824c0a2faa02d358c713</citedby><cites>FETCH-LOGICAL-a634t-1a7855abd74f698ff3870c2796667b1d43761100d7224824c0a2faa02d358c713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cgj-2016-0189$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cgj-2016-0189$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,776,780,2919,4010,27900,27901,27902,64401,64979</link.rule.ids></links><search><creatorcontrib>Liu, W.F</creatorcontrib><creatorcontrib>Leung, Y.F</creatorcontrib><creatorcontrib>Lo, M.K</creatorcontrib><title>Integrated framework for characterization of spatial variability of geological profiles</title><title>Canadian geotechnical journal</title><description>Despite recent efforts to characterize the uncertainties involved with geological profiles and soil and rock properties, there has been limited study on their spatial correlations and how such features may be included in the engineering decision-making process. This paper presents an integrated framework for geostatisical analyses, which incorporates the restricted maximum likelihood (REML) method with the Matérn autocovariance model. Statistical tests are conducted including those for data normality, constant variance, and outliers, which ensure the fundamental assumptions of REML are not violated in the residual analyses of site data, meanwhile offering simple checks for potential errors in the dataset. The proposed approach also allows quantification of uncertainties in the subsurface profiles at the unsampled locations. The approach is illustrated through investigations on spatial correlation features of geological profiles at two project sites in Hong Kong. The number of irregularly spaced boreholes varies from 150 to 350 in the two cases, and the large volume of data enables the variations in rockhead levels to be studied through the proposed framework. In addition, the existence of geological faults in one of the sites is found to significantly affect the spatial variability of the rockhead level, as indicated by the reduced scales of fluctuation and spatial dependence, which corresponds to increased uncertainty in areas intersected by faults.</description><subject>analyse résiduelle</subject><subject>Boreholes</subject><subject>Borings</subject><subject>Case studies</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>enquête du site</subject><subject>Geological faults</subject><subject>Geology</subject><subject>Geospatial data</subject><subject>Geotechnics</subject><subject>Geotechnology</subject><subject>Matérn covariance structure</subject><subject>Maximum likelihood method</subject><subject>méthode vraisemblance maximale restreinte</subject><subject>residual analysis</subject><subject>Residual stresses</subject><subject>restricted maximum likelihood method</subject><subject>Rock</subject><subject>Rock properties</subject><subject>rockhead variation</subject><subject>site investigation</subject><subject>structure Matérn covariance</subject><subject>Uncertainty</subject><subject>variation de la tête de roche</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqV0s1rFDEUAPAgCq7Vo_dBL3qY-pLJJJljKbUuFAU_8BjeZpJp1tnJNslq619vhgpaGVDJIY_k914-eIQ8pXBMadO9MsO2ZkBFDVR198iKMlC1AAr3yQqgxI2Q_CF5lNIWgHLO2Ip8Xk_ZDhGz7SsXcWe_hfilciFW5hIjmmyj_47Zh6kKrkr7EuJYfcXoceNHn2_m5cGGMQzelJ19DM6PNj0mDxyOyT75OR-RT6_PPp6-qS_ena9PTy5qFA3PNUWp2hY3veROdMq5RkkwTHZCCLmhPW-koBSgl4xxxbgBZA4RWN-0ykjaHJEXt3XLwVcHm7Le-WTsOOJkwyFpqmTXdQCM_QNtO67KtWShz_-g23CIU3nIrETLgTP6Sw04Wu0nF3L5sbmoPuFSMmi4UEXVC2qwk404hsnO33XXP1vwZu-v9O_oeAGV0dudN4tVX95JKCbb6zzgISW9_vD-P-zbxdeZGFKK1ul99DuMN5qCnrtSl67Uc1fquSuLh1s_RRNtshjN5V9SfgDQeN6-</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Liu, W.F</creator><creator>Leung, Y.F</creator><creator>Lo, M.K</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>2017</creationdate><title>Integrated framework for characterization of spatial variability of geological profiles</title><author>Liu, W.F ; Leung, Y.F ; Lo, M.K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a634t-1a7855abd74f698ff3870c2796667b1d43761100d7224824c0a2faa02d358c713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>analyse résiduelle</topic><topic>Boreholes</topic><topic>Borings</topic><topic>Case studies</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>enquête du site</topic><topic>Geological faults</topic><topic>Geology</topic><topic>Geospatial data</topic><topic>Geotechnics</topic><topic>Geotechnology</topic><topic>Matérn covariance structure</topic><topic>Maximum likelihood method</topic><topic>méthode vraisemblance maximale restreinte</topic><topic>residual analysis</topic><topic>Residual stresses</topic><topic>restricted maximum likelihood method</topic><topic>Rock</topic><topic>Rock properties</topic><topic>rockhead variation</topic><topic>site investigation</topic><topic>structure Matérn covariance</topic><topic>Uncertainty</topic><topic>variation de la tête de roche</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, W.F</creatorcontrib><creatorcontrib>Leung, Y.F</creatorcontrib><creatorcontrib>Lo, M.K</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, W.F</au><au>Leung, Y.F</au><au>Lo, M.K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated framework for characterization of spatial variability of geological profiles</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2017</date><risdate>2017</risdate><volume>54</volume><issue>1</issue><spage>47</spage><epage>58</epage><pages>47-58</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><coden>CGJOAH</coden><abstract>Despite recent efforts to characterize the uncertainties involved with geological profiles and soil and rock properties, there has been limited study on their spatial correlations and how such features may be included in the engineering decision-making process. This paper presents an integrated framework for geostatisical analyses, which incorporates the restricted maximum likelihood (REML) method with the Matérn autocovariance model. Statistical tests are conducted including those for data normality, constant variance, and outliers, which ensure the fundamental assumptions of REML are not violated in the residual analyses of site data, meanwhile offering simple checks for potential errors in the dataset. The proposed approach also allows quantification of uncertainties in the subsurface profiles at the unsampled locations. The approach is illustrated through investigations on spatial correlation features of geological profiles at two project sites in Hong Kong. The number of irregularly spaced boreholes varies from 150 to 350 in the two cases, and the large volume of data enables the variations in rockhead levels to be studied through the proposed framework. In addition, the existence of geological faults in one of the sites is found to significantly affect the spatial variability of the rockhead level, as indicated by the reduced scales of fluctuation and spatial dependence, which corresponds to increased uncertainty in areas intersected by faults.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2016-0189</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-3674
ispartof Canadian geotechnical journal, 2017, Vol.54 (1), p.47-58
issn 0008-3674
1208-6010
language eng
recordid cdi_gale_incontextgauss_ISN_A477203468
source NRC Research Press; Alma/SFX Local Collection
subjects analyse résiduelle
Boreholes
Borings
Case studies
Correlation
Correlation analysis
enquête du site
Geological faults
Geology
Geospatial data
Geotechnics
Geotechnology
Matérn covariance structure
Maximum likelihood method
méthode vraisemblance maximale restreinte
residual analysis
Residual stresses
restricted maximum likelihood method
Rock
Rock properties
rockhead variation
site investigation
structure Matérn covariance
Uncertainty
variation de la tête de roche
title Integrated framework for characterization of spatial variability of geological profiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20framework%20for%20characterization%20of%20spatial%20variability%20of%20geological%20profiles&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Liu,%20W.F&rft.date=2017&rft.volume=54&rft.issue=1&rft.spage=47&rft.epage=58&rft.pages=47-58&rft.issn=0008-3674&rft.eissn=1208-6010&rft.coden=CGJOAH&rft_id=info:doi/10.1139/cgj-2016-0189&rft_dat=%3Cgale_cross%3EA477203468%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856540421&rft_id=info:pmid/&rft_galeid=A477203468&rfr_iscdi=true