Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America

This paper presents the effectiveness of seven ground motion scaling methods and two spectral matching methods to achieve compatibility with the Canadian National Building Code (CNBC) 2005 uniform hazard spectrum for Montreal to perform nonlinear seismic analysis. Databases of 30 historical records...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of civil engineering 2014-03, Vol.41 (3), p.232-244
Hauptverfasser: MICHAUD, Dominic, LEGER, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue 3
container_start_page 232
container_title Canadian journal of civil engineering
container_volume 41
creator MICHAUD, Dominic
LEGER, Pierre
description This paper presents the effectiveness of seven ground motion scaling methods and two spectral matching methods to achieve compatibility with the Canadian National Building Code (CNBC) 2005 uniform hazard spectrum for Montreal to perform nonlinear seismic analysis. Databases of 30 historical records and 30 Eastern North America simulated records have been selected to compute the reference mean seismic demand and its dispersion. The characteristics and destructive capacity of ground motions have been studied using a large number of indices computed from (i) the records themselves, (ii) a series of single degree of freedom structures, as well as (iii) a four-story steel frame. Record scaling methods to the target spectrum using (i) spectral intensity, (ii) reducing the mean square error, (iii) and minimizing dispersion as well as time domain spectral matching generated coherent seismic demand and dispersion in agreement with the reference values. Spectral matching to a specified elastic design spectrum does not reduce the dispersion of the nonlinear response. Therefore close spectral matching cannot be used to reduce the number of records to minimize the resources allocated in seismic safety assessment. At least seven records, as recommended in current CNBC and FEMA (2012) guidelines to compute an average response, should be used to characterize the nonlinear behaviour of structural systems.
doi_str_mv 10.1139/cjce-2012-0339
format Article
fullrecord <record><control><sourceid>gale_nrcre</sourceid><recordid>TN_cdi_gale_incontextgauss_ISN_A366459466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A366459466</galeid><sourcerecordid>A366459466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a632t-ea1a1a21e5786b3d2607a9cdbc2e33dc185b36a43f55eb5af1713ff12675a43f3</originalsourceid><addsrcrecordid>eNqVkt1rFDEUxQdRcK2--hwUQcGpyWQmM_O4lFoLpYIfzyGTudnNMptsczPQ_e9N2KJdWRAJJJfL7xyS3FMUrxk9Z4z3n_RGQ1lRVpWU8_5JsWAV7UpBq_5psaCcNSWrRfe8eIG4oZRlaFGEq-BnN5Ktj9Y7JAgT6FwSlbqo1WTdihgfiPMu1aACGfdOba1OhJr2aJF4QzCGWcc5AJLJaxVhJNaRS4URgiO3PsQ1WW4hWK1eFs-MmhBePZxnxc_Plz8uvpQ3X6-uL5Y3pRK8iiUollbFoGk7MfCxErRVvR4HXQHno2ZdM3Cham6aBoZGGdYybgyrRNvkLj8r3h98d8HfzYBRbi1qmCblwM8oWVOzuu5ESxP69i904-eQnpcpln6wb_v-D7VSE0jrjI9B6Wwql1yIuulrIRJVnqBW4CCoyTswNrWP-DcneL2zd_IxdH4CSmuENImTrh-OBImJcB9XakaU19-__Qd7e8x-fMQOM6ZIYNrQrtYRD5LliXvr4BEDGLkLdqvCXjIqc2plTq3MqZU5kEnw7mESKofPBOW0xd-qqqtr1vV5YuzAuaBT6FIs9fpf3r8AiGr5ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510299799</pqid></control><display><type>article</type><title>Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America</title><source>Alma/SFX Local Collection</source><creator>MICHAUD, Dominic ; LEGER, Pierre</creator><creatorcontrib>MICHAUD, Dominic ; LEGER, Pierre</creatorcontrib><description>This paper presents the effectiveness of seven ground motion scaling methods and two spectral matching methods to achieve compatibility with the Canadian National Building Code (CNBC) 2005 uniform hazard spectrum for Montreal to perform nonlinear seismic analysis. Databases of 30 historical records and 30 Eastern North America simulated records have been selected to compute the reference mean seismic demand and its dispersion. The characteristics and destructive capacity of ground motions have been studied using a large number of indices computed from (i) the records themselves, (ii) a series of single degree of freedom structures, as well as (iii) a four-story steel frame. Record scaling methods to the target spectrum using (i) spectral intensity, (ii) reducing the mean square error, (iii) and minimizing dispersion as well as time domain spectral matching generated coherent seismic demand and dispersion in agreement with the reference values. Spectral matching to a specified elastic design spectrum does not reduce the dispersion of the nonlinear response. Therefore close spectral matching cannot be used to reduce the number of records to minimize the resources allocated in seismic safety assessment. At least seven records, as recommended in current CNBC and FEMA (2012) guidelines to compute an average response, should be used to characterize the nonlinear behaviour of structural systems.</description><identifier>ISSN: 0315-1468</identifier><identifier>EISSN: 1208-6029</identifier><identifier>DOI: 10.1139/cjce-2012-0339</identifier><identifier>CODEN: CJCEB8</identifier><language>eng</language><publisher>Ottawa, ON: NRC Research Press</publisher><subject>ajustement spectral ; Americas ; analyse dynamique nonlinéaire ; Applied sciences ; Assessments ; Building codes ; Buildings. Public works ; Canada ; Canadian National Building Code ; Code National du bâtiment du Canada ; Demand ; Dispersion ; Dispersions ; Dynamic testing ; Earthquake damage ; Eastern North America ; Effectiveness studies ; Engineering research ; Est de l’Amérique du Nord ; Exact sciences and technology ; Geotechnics ; Ground motion ; ground motion scaling ; Matching ; Methods ; nonlinear dynamic analysis ; Nonlinear systems ; Nonlinearity ; Regulation. Standardization ; Seismology ; Simulation ; Spectra ; spectral matching ; Spectrum analysis ; Stresses. Safety ; Structural analysis. Stresses ; Structure-soil interaction ; étalonnage des secousses sismiques</subject><ispartof>Canadian journal of civil engineering, 2014-03, Vol.41 (3), p.232-244</ispartof><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 NRC Research Press</rights><rights>Copyright Canadian Science Publishing NRC Research Press Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a632t-ea1a1a21e5786b3d2607a9cdbc2e33dc185b36a43f55eb5af1713ff12675a43f3</citedby><cites>FETCH-LOGICAL-a632t-ea1a1a21e5786b3d2607a9cdbc2e33dc185b36a43f55eb5af1713ff12675a43f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28441890$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MICHAUD, Dominic</creatorcontrib><creatorcontrib>LEGER, Pierre</creatorcontrib><title>Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America</title><title>Canadian journal of civil engineering</title><description>This paper presents the effectiveness of seven ground motion scaling methods and two spectral matching methods to achieve compatibility with the Canadian National Building Code (CNBC) 2005 uniform hazard spectrum for Montreal to perform nonlinear seismic analysis. Databases of 30 historical records and 30 Eastern North America simulated records have been selected to compute the reference mean seismic demand and its dispersion. The characteristics and destructive capacity of ground motions have been studied using a large number of indices computed from (i) the records themselves, (ii) a series of single degree of freedom structures, as well as (iii) a four-story steel frame. Record scaling methods to the target spectrum using (i) spectral intensity, (ii) reducing the mean square error, (iii) and minimizing dispersion as well as time domain spectral matching generated coherent seismic demand and dispersion in agreement with the reference values. Spectral matching to a specified elastic design spectrum does not reduce the dispersion of the nonlinear response. Therefore close spectral matching cannot be used to reduce the number of records to minimize the resources allocated in seismic safety assessment. At least seven records, as recommended in current CNBC and FEMA (2012) guidelines to compute an average response, should be used to characterize the nonlinear behaviour of structural systems.</description><subject>ajustement spectral</subject><subject>Americas</subject><subject>analyse dynamique nonlinéaire</subject><subject>Applied sciences</subject><subject>Assessments</subject><subject>Building codes</subject><subject>Buildings. Public works</subject><subject>Canada</subject><subject>Canadian National Building Code</subject><subject>Code National du bâtiment du Canada</subject><subject>Demand</subject><subject>Dispersion</subject><subject>Dispersions</subject><subject>Dynamic testing</subject><subject>Earthquake damage</subject><subject>Eastern North America</subject><subject>Effectiveness studies</subject><subject>Engineering research</subject><subject>Est de l’Amérique du Nord</subject><subject>Exact sciences and technology</subject><subject>Geotechnics</subject><subject>Ground motion</subject><subject>ground motion scaling</subject><subject>Matching</subject><subject>Methods</subject><subject>nonlinear dynamic analysis</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Regulation. Standardization</subject><subject>Seismology</subject><subject>Simulation</subject><subject>Spectra</subject><subject>spectral matching</subject><subject>Spectrum analysis</subject><subject>Stresses. Safety</subject><subject>Structural analysis. Stresses</subject><subject>Structure-soil interaction</subject><subject>étalonnage des secousses sismiques</subject><issn>0315-1468</issn><issn>1208-6029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqVkt1rFDEUxQdRcK2--hwUQcGpyWQmM_O4lFoLpYIfzyGTudnNMptsczPQ_e9N2KJdWRAJJJfL7xyS3FMUrxk9Z4z3n_RGQ1lRVpWU8_5JsWAV7UpBq_5psaCcNSWrRfe8eIG4oZRlaFGEq-BnN5Ktj9Y7JAgT6FwSlbqo1WTdihgfiPMu1aACGfdOba1OhJr2aJF4QzCGWcc5AJLJaxVhJNaRS4URgiO3PsQ1WW4hWK1eFs-MmhBePZxnxc_Plz8uvpQ3X6-uL5Y3pRK8iiUollbFoGk7MfCxErRVvR4HXQHno2ZdM3Cham6aBoZGGdYybgyrRNvkLj8r3h98d8HfzYBRbi1qmCblwM8oWVOzuu5ESxP69i904-eQnpcpln6wb_v-D7VSE0jrjI9B6Wwql1yIuulrIRJVnqBW4CCoyTswNrWP-DcneL2zd_IxdH4CSmuENImTrh-OBImJcB9XakaU19-__Qd7e8x-fMQOM6ZIYNrQrtYRD5LliXvr4BEDGLkLdqvCXjIqc2plTq3MqZU5kEnw7mESKofPBOW0xd-qqqtr1vV5YuzAuaBT6FIs9fpf3r8AiGr5ZQ</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>MICHAUD, Dominic</creator><creator>LEGER, Pierre</creator><general>NRC Research Press</general><general>National Research Council of Canada</general><general>Canadian Science Publishing NRC Research Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>ISN</scope><scope>ISR</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>7SM</scope></search><sort><creationdate>20140301</creationdate><title>Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America</title><author>MICHAUD, Dominic ; LEGER, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a632t-ea1a1a21e5786b3d2607a9cdbc2e33dc185b36a43f55eb5af1713ff12675a43f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ajustement spectral</topic><topic>Americas</topic><topic>analyse dynamique nonlinéaire</topic><topic>Applied sciences</topic><topic>Assessments</topic><topic>Building codes</topic><topic>Buildings. Public works</topic><topic>Canada</topic><topic>Canadian National Building Code</topic><topic>Code National du bâtiment du Canada</topic><topic>Demand</topic><topic>Dispersion</topic><topic>Dispersions</topic><topic>Dynamic testing</topic><topic>Earthquake damage</topic><topic>Eastern North America</topic><topic>Effectiveness studies</topic><topic>Engineering research</topic><topic>Est de l’Amérique du Nord</topic><topic>Exact sciences and technology</topic><topic>Geotechnics</topic><topic>Ground motion</topic><topic>ground motion scaling</topic><topic>Matching</topic><topic>Methods</topic><topic>nonlinear dynamic analysis</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Regulation. Standardization</topic><topic>Seismology</topic><topic>Simulation</topic><topic>Spectra</topic><topic>spectral matching</topic><topic>Spectrum analysis</topic><topic>Stresses. Safety</topic><topic>Structural analysis. Stresses</topic><topic>Structure-soil interaction</topic><topic>étalonnage des secousses sismiques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MICHAUD, Dominic</creatorcontrib><creatorcontrib>LEGER, Pierre</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Canadian journal of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MICHAUD, Dominic</au><au>LEGER, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America</atitle><jtitle>Canadian journal of civil engineering</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>41</volume><issue>3</issue><spage>232</spage><epage>244</epage><pages>232-244</pages><issn>0315-1468</issn><eissn>1208-6029</eissn><coden>CJCEB8</coden><abstract>This paper presents the effectiveness of seven ground motion scaling methods and two spectral matching methods to achieve compatibility with the Canadian National Building Code (CNBC) 2005 uniform hazard spectrum for Montreal to perform nonlinear seismic analysis. Databases of 30 historical records and 30 Eastern North America simulated records have been selected to compute the reference mean seismic demand and its dispersion. The characteristics and destructive capacity of ground motions have been studied using a large number of indices computed from (i) the records themselves, (ii) a series of single degree of freedom structures, as well as (iii) a four-story steel frame. Record scaling methods to the target spectrum using (i) spectral intensity, (ii) reducing the mean square error, (iii) and minimizing dispersion as well as time domain spectral matching generated coherent seismic demand and dispersion in agreement with the reference values. Spectral matching to a specified elastic design spectrum does not reduce the dispersion of the nonlinear response. Therefore close spectral matching cannot be used to reduce the number of records to minimize the resources allocated in seismic safety assessment. At least seven records, as recommended in current CNBC and FEMA (2012) guidelines to compute an average response, should be used to characterize the nonlinear behaviour of structural systems.</abstract><cop>Ottawa, ON</cop><pub>NRC Research Press</pub><doi>10.1139/cjce-2012-0339</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0315-1468
ispartof Canadian journal of civil engineering, 2014-03, Vol.41 (3), p.232-244
issn 0315-1468
1208-6029
language eng
recordid cdi_gale_incontextgauss_ISN_A366459466
source Alma/SFX Local Collection
subjects ajustement spectral
Americas
analyse dynamique nonlinéaire
Applied sciences
Assessments
Building codes
Buildings. Public works
Canada
Canadian National Building Code
Code National du bâtiment du Canada
Demand
Dispersion
Dispersions
Dynamic testing
Earthquake damage
Eastern North America
Effectiveness studies
Engineering research
Est de l’Amérique du Nord
Exact sciences and technology
Geotechnics
Ground motion
ground motion scaling
Matching
Methods
nonlinear dynamic analysis
Nonlinear systems
Nonlinearity
Regulation. Standardization
Seismology
Simulation
Spectra
spectral matching
Spectrum analysis
Stresses. Safety
Structural analysis. Stresses
Structure-soil interaction
étalonnage des secousses sismiques
title Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_nrcre&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ground%20motions%20selection%20and%20scaling%20for%20nonlinear%20dynamic%20analysis%20of%20structures%20located%20in%20Eastern%20North%20America&rft.jtitle=Canadian%20journal%20of%20civil%20engineering&rft.au=MICHAUD,%20Dominic&rft.date=2014-03-01&rft.volume=41&rft.issue=3&rft.spage=232&rft.epage=244&rft.pages=232-244&rft.issn=0315-1468&rft.eissn=1208-6029&rft.coden=CJCEB8&rft_id=info:doi/10.1139/cjce-2012-0339&rft_dat=%3Cgale_nrcre%3EA366459466%3C/gale_nrcre%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510299799&rft_id=info:pmid/&rft_galeid=A366459466&rfr_iscdi=true