Numerical simulation of a secondary clarifier in a sewage treatment plant using modified Bingham model

A numerical scheme for simulation of activated sludge sediment flow in a circular secondary clarifier is developed. The flow and settling processes are simulated, using the k- ε turbulence model on a two-dimensional axisymmetric and orthogonal grid. To incorporate the sedimentation of the activated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of civil engineering 2011-01, Vol.38 (1), p.11-22
Hauptverfasser: Saffarian, Mohammad Reza, Hamedi, Mohammad Hossein, Shams, Mehrzad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 11
container_title Canadian journal of civil engineering
container_volume 38
creator Saffarian, Mohammad Reza
Hamedi, Mohammad Hossein
Shams, Mehrzad
description A numerical scheme for simulation of activated sludge sediment flow in a circular secondary clarifier is developed. The flow and settling processes are simulated, using the k- ε turbulence model on a two-dimensional axisymmetric and orthogonal grid. To incorporate the sedimentation of the activated sludge in the field of gravity, a convection-dispersion equation governing the mass transfer in the clarifier is extended. The computational domain includes the sludge blanket where the viscosity is affected by the rheological behavior of the sludge. The double-exponential equation is used to describe the dependence of the settling velocity on the solids concentration. The compression and consolidation process of the activated sludge is simulated by this equation. The experimental data provided by Weiss et al. show that the rheograms follow the Bingham law at low-shear rates. The modified Bingham model was introduced to overcome the blanket height overestimation problem with the results showing that the local sludge distribution in the clarifier has an excellent agreement with the concentration profile measurements by Weiss et al. (2007) and the sludge viscosity dominates the flow and sedimentation of activated sludge within the sludge blanket.
doi_str_mv 10.1139/L10-106
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_incontextgauss_ISN_A250459053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A250459053</galeid><sourcerecordid>A250459053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c651t-711e5c40fd2d3cc20921fbcd671bbcf2774d0d196130a0f6940109417937dbd33</originalsourceid><addsrcrecordid>eNqV0m1r1TAUB_AiCl6n-BXKxEfszGnatHk5hw-DywQfXoc0OenNaNMuaVG_vakdsitXRQppkv7yJ0lPkjwEcgJA-astkAwIu5VsICd1xkjObycbQqHMoGD13eReCJeEAKGUbxJzMfforZJdGmw_d3Kyg0sHk8o0oBqclv57qjrprbHoU-t-fvgqW0wnj3Lq0U3p2MnYzsG6Nu0HvVCdvo6jneyXCezuJ3eM7AI-uH4fJV_evvl89j7bfnh3fna6zRQrYcoqACxVQYzONVUqJzwH0yjNKmgaZfKqKjTRwBlQIolhvIjn4AVUnFa60ZQeJc_W3NEPVzOGSfQ2KOziBnGYgwBW5JRCzat_05LlrKIllJEe_0Yvh9m7eBBRxywCVc0ierSiVnYorDPD5KVaMsVpXpKi5KRcNpgdUC069LIbHBobp_f88QGvRnslbqKTAyg-GnurDqY-31sQzYTfplbOIYjzTx__w17s25c3bLNUBIbYBNvuprAu2eNPV678EIJHI0Zv-1hxAohYillslw5ZLvfx9R-QIdaq8dIpG37xnPKCckKie7E655XHgNKr3V9Cn_wZdysSozb0B-UnB90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>818901786</pqid></control><display><type>article</type><title>Numerical simulation of a secondary clarifier in a sewage treatment plant using modified Bingham model</title><source>Alma/SFX Local Collection</source><creator>Saffarian, Mohammad Reza ; Hamedi, Mohammad Hossein ; Shams, Mehrzad</creator><creatorcontrib>Saffarian, Mohammad Reza ; Hamedi, Mohammad Hossein ; Shams, Mehrzad</creatorcontrib><description>A numerical scheme for simulation of activated sludge sediment flow in a circular secondary clarifier is developed. The flow and settling processes are simulated, using the k- ε turbulence model on a two-dimensional axisymmetric and orthogonal grid. To incorporate the sedimentation of the activated sludge in the field of gravity, a convection-dispersion equation governing the mass transfer in the clarifier is extended. The computational domain includes the sludge blanket where the viscosity is affected by the rheological behavior of the sludge. The double-exponential equation is used to describe the dependence of the settling velocity on the solids concentration. The compression and consolidation process of the activated sludge is simulated by this equation. The experimental data provided by Weiss et al. show that the rheograms follow the Bingham law at low-shear rates. The modified Bingham model was introduced to overcome the blanket height overestimation problem with the results showing that the local sludge distribution in the clarifier has an excellent agreement with the concentration profile measurements by Weiss et al. (2007) and the sludge viscosity dominates the flow and sedimentation of activated sludge within the sludge blanket.</description><identifier>ISSN: 0315-1468</identifier><identifier>EISSN: 1208-6029</identifier><identifier>DOI: 10.1139/L10-106</identifier><identifier>CODEN: CJCEB8</identifier><language>eng</language><publisher>Ottawa, ON: National Research Council of Canada</publisher><subject>Activated sludge ; Applied sciences ; Bingham modifié ; Blanketing ; boues activées ; Buildings. Public works ; Civil engineering ; Clarifiers ; Computation methods. Tables. Charts ; Computer simulation ; concentration ; Exact sciences and technology ; Mass transfer ; Mathematical analysis ; Mathematical models ; modified Bingham ; Purification ; Sediment transport ; Sedimentation ; Sedimentation &amp; deposition ; Settling velocity ; Sewage ; Sewage clarifiers ; Sewage treatment ; Sewage treatment plants ; Sewerage. Sewer construction ; Simulation ; Sludge ; Structural analysis. Stresses ; sédimentation ; turbulence ; Turbulence models ; Viscosity ; Wastewater treatment plants</subject><ispartof>Canadian journal of civil engineering, 2011-01, Vol.38 (1), p.11-22</ispartof><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 NRC Research Press</rights><rights>Copyright National Research Council of Canada Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c651t-711e5c40fd2d3cc20921fbcd671bbcf2774d0d196130a0f6940109417937dbd33</citedby><cites>FETCH-LOGICAL-c651t-711e5c40fd2d3cc20921fbcd671bbcf2774d0d196130a0f6940109417937dbd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23943900$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Saffarian, Mohammad Reza</creatorcontrib><creatorcontrib>Hamedi, Mohammad Hossein</creatorcontrib><creatorcontrib>Shams, Mehrzad</creatorcontrib><title>Numerical simulation of a secondary clarifier in a sewage treatment plant using modified Bingham model</title><title>Canadian journal of civil engineering</title><addtitle>Revue canadienne de génie civil</addtitle><description>A numerical scheme for simulation of activated sludge sediment flow in a circular secondary clarifier is developed. The flow and settling processes are simulated, using the k- ε turbulence model on a two-dimensional axisymmetric and orthogonal grid. To incorporate the sedimentation of the activated sludge in the field of gravity, a convection-dispersion equation governing the mass transfer in the clarifier is extended. The computational domain includes the sludge blanket where the viscosity is affected by the rheological behavior of the sludge. The double-exponential equation is used to describe the dependence of the settling velocity on the solids concentration. The compression and consolidation process of the activated sludge is simulated by this equation. The experimental data provided by Weiss et al. show that the rheograms follow the Bingham law at low-shear rates. The modified Bingham model was introduced to overcome the blanket height overestimation problem with the results showing that the local sludge distribution in the clarifier has an excellent agreement with the concentration profile measurements by Weiss et al. (2007) and the sludge viscosity dominates the flow and sedimentation of activated sludge within the sludge blanket.</description><subject>Activated sludge</subject><subject>Applied sciences</subject><subject>Bingham modifié</subject><subject>Blanketing</subject><subject>boues activées</subject><subject>Buildings. Public works</subject><subject>Civil engineering</subject><subject>Clarifiers</subject><subject>Computation methods. Tables. Charts</subject><subject>Computer simulation</subject><subject>concentration</subject><subject>Exact sciences and technology</subject><subject>Mass transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>modified Bingham</subject><subject>Purification</subject><subject>Sediment transport</subject><subject>Sedimentation</subject><subject>Sedimentation &amp; deposition</subject><subject>Settling velocity</subject><subject>Sewage</subject><subject>Sewage clarifiers</subject><subject>Sewage treatment</subject><subject>Sewage treatment plants</subject><subject>Sewerage. Sewer construction</subject><subject>Simulation</subject><subject>Sludge</subject><subject>Structural analysis. Stresses</subject><subject>sédimentation</subject><subject>turbulence</subject><subject>Turbulence models</subject><subject>Viscosity</subject><subject>Wastewater treatment plants</subject><issn>0315-1468</issn><issn>1208-6029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqV0m1r1TAUB_AiCl6n-BXKxEfszGnatHk5hw-DywQfXoc0OenNaNMuaVG_vakdsitXRQppkv7yJ0lPkjwEcgJA-astkAwIu5VsICd1xkjObycbQqHMoGD13eReCJeEAKGUbxJzMfforZJdGmw_d3Kyg0sHk8o0oBqclv57qjrprbHoU-t-fvgqW0wnj3Lq0U3p2MnYzsG6Nu0HvVCdvo6jneyXCezuJ3eM7AI-uH4fJV_evvl89j7bfnh3fna6zRQrYcoqACxVQYzONVUqJzwH0yjNKmgaZfKqKjTRwBlQIolhvIjn4AVUnFa60ZQeJc_W3NEPVzOGSfQ2KOziBnGYgwBW5JRCzat_05LlrKIllJEe_0Yvh9m7eBBRxywCVc0ierSiVnYorDPD5KVaMsVpXpKi5KRcNpgdUC069LIbHBobp_f88QGvRnslbqKTAyg-GnurDqY-31sQzYTfplbOIYjzTx__w17s25c3bLNUBIbYBNvuprAu2eNPV678EIJHI0Zv-1hxAohYillslw5ZLvfx9R-QIdaq8dIpG37xnPKCckKie7E655XHgNKr3V9Cn_wZdysSozb0B-UnB90</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Saffarian, Mohammad Reza</creator><creator>Hamedi, Mohammad Hossein</creator><creator>Shams, Mehrzad</creator><general>National Research Council of Canada</general><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>ISN</scope><scope>ISR</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>7QH</scope><scope>H97</scope></search><sort><creationdate>201101</creationdate><title>Numerical simulation of a secondary clarifier in a sewage treatment plant using modified Bingham model</title><author>Saffarian, Mohammad Reza ; Hamedi, Mohammad Hossein ; Shams, Mehrzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c651t-711e5c40fd2d3cc20921fbcd671bbcf2774d0d196130a0f6940109417937dbd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activated sludge</topic><topic>Applied sciences</topic><topic>Bingham modifié</topic><topic>Blanketing</topic><topic>boues activées</topic><topic>Buildings. Public works</topic><topic>Civil engineering</topic><topic>Clarifiers</topic><topic>Computation methods. Tables. Charts</topic><topic>Computer simulation</topic><topic>concentration</topic><topic>Exact sciences and technology</topic><topic>Mass transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>modified Bingham</topic><topic>Purification</topic><topic>Sediment transport</topic><topic>Sedimentation</topic><topic>Sedimentation &amp; deposition</topic><topic>Settling velocity</topic><topic>Sewage</topic><topic>Sewage clarifiers</topic><topic>Sewage treatment</topic><topic>Sewage treatment plants</topic><topic>Sewerage. Sewer construction</topic><topic>Simulation</topic><topic>Sludge</topic><topic>Structural analysis. Stresses</topic><topic>sédimentation</topic><topic>turbulence</topic><topic>Turbulence models</topic><topic>Viscosity</topic><topic>Wastewater treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saffarian, Mohammad Reza</creatorcontrib><creatorcontrib>Hamedi, Mohammad Hossein</creatorcontrib><creatorcontrib>Shams, Mehrzad</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><jtitle>Canadian journal of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saffarian, Mohammad Reza</au><au>Hamedi, Mohammad Hossein</au><au>Shams, Mehrzad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of a secondary clarifier in a sewage treatment plant using modified Bingham model</atitle><jtitle>Canadian journal of civil engineering</jtitle><addtitle>Revue canadienne de génie civil</addtitle><date>2011-01</date><risdate>2011</risdate><volume>38</volume><issue>1</issue><spage>11</spage><epage>22</epage><pages>11-22</pages><issn>0315-1468</issn><eissn>1208-6029</eissn><coden>CJCEB8</coden><abstract>A numerical scheme for simulation of activated sludge sediment flow in a circular secondary clarifier is developed. The flow and settling processes are simulated, using the k- ε turbulence model on a two-dimensional axisymmetric and orthogonal grid. To incorporate the sedimentation of the activated sludge in the field of gravity, a convection-dispersion equation governing the mass transfer in the clarifier is extended. The computational domain includes the sludge blanket where the viscosity is affected by the rheological behavior of the sludge. The double-exponential equation is used to describe the dependence of the settling velocity on the solids concentration. The compression and consolidation process of the activated sludge is simulated by this equation. The experimental data provided by Weiss et al. show that the rheograms follow the Bingham law at low-shear rates. The modified Bingham model was introduced to overcome the blanket height overestimation problem with the results showing that the local sludge distribution in the clarifier has an excellent agreement with the concentration profile measurements by Weiss et al. (2007) and the sludge viscosity dominates the flow and sedimentation of activated sludge within the sludge blanket.</abstract><cop>Ottawa, ON</cop><pub>National Research Council of Canada</pub><doi>10.1139/L10-106</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0315-1468
ispartof Canadian journal of civil engineering, 2011-01, Vol.38 (1), p.11-22
issn 0315-1468
1208-6029
language eng
recordid cdi_gale_incontextgauss_ISN_A250459053
source Alma/SFX Local Collection
subjects Activated sludge
Applied sciences
Bingham modifié
Blanketing
boues activées
Buildings. Public works
Civil engineering
Clarifiers
Computation methods. Tables. Charts
Computer simulation
concentration
Exact sciences and technology
Mass transfer
Mathematical analysis
Mathematical models
modified Bingham
Purification
Sediment transport
Sedimentation
Sedimentation & deposition
Settling velocity
Sewage
Sewage clarifiers
Sewage treatment
Sewage treatment plants
Sewerage. Sewer construction
Simulation
Sludge
Structural analysis. Stresses
sédimentation
turbulence
Turbulence models
Viscosity
Wastewater treatment plants
title Numerical simulation of a secondary clarifier in a sewage treatment plant using modified Bingham model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20a%20secondary%20clarifier%20in%20a%20sewage%20treatment%20plant%20using%20modified%20Bingham%20model&rft.jtitle=Canadian%20journal%20of%20civil%20engineering&rft.au=Saffarian,%20Mohammad%20Reza&rft.date=2011-01&rft.volume=38&rft.issue=1&rft.spage=11&rft.epage=22&rft.pages=11-22&rft.issn=0315-1468&rft.eissn=1208-6029&rft.coden=CJCEB8&rft_id=info:doi/10.1139/L10-106&rft_dat=%3Cgale_proqu%3EA250459053%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=818901786&rft_id=info:pmid/&rft_galeid=A250459053&rfr_iscdi=true