Predicting the age of ancient Thuja occidentalis on cliffs

In rocky, heterogeneous environments that support old-growth forests, the relationship between tree size and age is weaker than it is for trees growing in productive and homogeneous habitats. To assist in the management and conservation of ancient forests on rocky land of low productivity, it would...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of forest research 2008-12, Vol.38 (12), p.2923-2931
Hauptverfasser: Matthes, Uta, Kelly, Peter E, Larson, Douglas W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2931
container_issue 12
container_start_page 2923
container_title Canadian journal of forest research
container_volume 38
creator Matthes, Uta
Kelly, Peter E
Larson, Douglas W
description In rocky, heterogeneous environments that support old-growth forests, the relationship between tree size and age is weaker than it is for trees growing in productive and homogeneous habitats. To assist in the management and conservation of ancient forests on rocky land of low productivity, it would be useful if the relationships among age, environmental heterogeneity, and morphological variability could be understood and used to develop predictive models of longevity so that extensive core sampling of trees would not be required. Here we sampled 296 mature Thuja occidentalis L. growing on limestone cliffs along the Niagara Escarpment, southern Ontario, Canada. We measured a variety of site conditions and morphological traits, including age, which varied from 51 to 1316 years. We then used redundancy analysis and multiple regression to model the relationships among age, morphology, growth rate, and environment, resulting in quantitative models predicting tree age from four subsets of variables. We subsequently tested the models on 60 additional trees not used to build the models and found that they predicted up to 78% of the variation in actual tree age. This approach could be adopted for use in other forest types to predict the age of trees without using tree-ring analysis.
doi_str_mv 10.1139/X08-131
format Article
fullrecord <record><control><sourceid>gale_fao_a</sourceid><recordid>TN_cdi_gale_incontextgauss_ISN_A192689120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A192689120</galeid><sourcerecordid>A192689120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-212f962a964603d9a7222323cc7734d5b832613b6a676c00d3a43e1d40741113</originalsourceid><addsrcrecordid>eNqV0ltrFDEUAOAgCq5V_AkOgorC1Nwm2fGtFC-FomJX8C2cZpLZLLPJNpmB-u89ZUrran2QPOTCl5Pk5BDylNFDxkT79gdd1kywe2TBOA4VFfo-WVAqm7qhSj8kj0rZUEqFEnRB3n3Nrgt2DLGvxrWroHdV8hVEG1wcq9V62kCVrA0dTmEIpUqxskPwvjwmDzwMxT257g_I6sP71fGn-vTLx5Pjo9PaNroZa864bxWHVkm8S9eC5pwLLqzVWsiuOV8Krpg4V6C0spR2AqRwrJNUS4YvOiAv57C7nC4mV0azDcW6YYDo0lQMp41iXGiEz_-AmzTliFczXCCSS6UQ1TPqYXAmRJ_GDLZ30WUYUnQ-4PIRa7latpi_26B73u7ChfkdHd6BsHVuG-ydUV_vbUAzusuxh6kUc3L27T_s5337arY2p1Ky82aXwxbyT8OouaoOg9VhsDpQvrhOFhQLg89XP15uOGcM64br2-zHbLMrDrJd36jLOZjZdR7hm3_Dv09_NmMPyUCf8eTvZ5wyQVmjZSu1-AX-CtXK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230564866</pqid></control><display><type>article</type><title>Predicting the age of ancient Thuja occidentalis on cliffs</title><source>Alma/SFX Local Collection</source><creator>Matthes, Uta ; Kelly, Peter E ; Larson, Douglas W</creator><creatorcontrib>Matthes, Uta ; Kelly, Peter E ; Larson, Douglas W</creatorcontrib><description>In rocky, heterogeneous environments that support old-growth forests, the relationship between tree size and age is weaker than it is for trees growing in productive and homogeneous habitats. To assist in the management and conservation of ancient forests on rocky land of low productivity, it would be useful if the relationships among age, environmental heterogeneity, and morphological variability could be understood and used to develop predictive models of longevity so that extensive core sampling of trees would not be required. Here we sampled 296 mature Thuja occidentalis L. growing on limestone cliffs along the Niagara Escarpment, southern Ontario, Canada. We measured a variety of site conditions and morphological traits, including age, which varied from 51 to 1316 years. We then used redundancy analysis and multiple regression to model the relationships among age, morphology, growth rate, and environment, resulting in quantitative models predicting tree age from four subsets of variables. We subsequently tested the models on 60 additional trees not used to build the models and found that they predicted up to 78% of the variation in actual tree age. This approach could be adopted for use in other forest types to predict the age of trees without using tree-ring analysis.</description><identifier>ISSN: 0045-5067</identifier><identifier>EISSN: 1208-6037</identifier><identifier>DOI: 10.1139/X08-131</identifier><identifier>CODEN: CJFRAR</identifier><language>eng</language><publisher>Ottawa, ON: National Research Council of Canada</publisher><subject>Age ; Aging ; Biological and medical sciences ; cliff faces ; cliffs ; Conservation ; dolomitic limestone ; environmental factors ; Escarpments ; Forest management ; forest trees ; Forestry ; Fundamental and applied biological sciences. Psychology ; Growth ; Heterogeneity ; Limestone ; Niagara escarpment ; old-growth forests ; Plant growth ; plant morphology ; prediction ; Prediction models ; Regression analysis ; statistical models ; stem form ; Thuja occidentalis ; tree age ; tree growth ; Trees</subject><ispartof>Canadian journal of forest research, 2008-12, Vol.38 (12), p.2923-2931</ispartof><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2008 NRC Research Press</rights><rights>Copyright National Research Council of Canada Dec 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-212f962a964603d9a7222323cc7734d5b832613b6a676c00d3a43e1d40741113</citedby><cites>FETCH-LOGICAL-c575t-212f962a964603d9a7222323cc7734d5b832613b6a676c00d3a43e1d40741113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21103727$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Matthes, Uta</creatorcontrib><creatorcontrib>Kelly, Peter E</creatorcontrib><creatorcontrib>Larson, Douglas W</creatorcontrib><title>Predicting the age of ancient Thuja occidentalis on cliffs</title><title>Canadian journal of forest research</title><addtitle>Revue canadienne de recherche forestière</addtitle><description>In rocky, heterogeneous environments that support old-growth forests, the relationship between tree size and age is weaker than it is for trees growing in productive and homogeneous habitats. To assist in the management and conservation of ancient forests on rocky land of low productivity, it would be useful if the relationships among age, environmental heterogeneity, and morphological variability could be understood and used to develop predictive models of longevity so that extensive core sampling of trees would not be required. Here we sampled 296 mature Thuja occidentalis L. growing on limestone cliffs along the Niagara Escarpment, southern Ontario, Canada. We measured a variety of site conditions and morphological traits, including age, which varied from 51 to 1316 years. We then used redundancy analysis and multiple regression to model the relationships among age, morphology, growth rate, and environment, resulting in quantitative models predicting tree age from four subsets of variables. We subsequently tested the models on 60 additional trees not used to build the models and found that they predicted up to 78% of the variation in actual tree age. This approach could be adopted for use in other forest types to predict the age of trees without using tree-ring analysis.</description><subject>Age</subject><subject>Aging</subject><subject>Biological and medical sciences</subject><subject>cliff faces</subject><subject>cliffs</subject><subject>Conservation</subject><subject>dolomitic limestone</subject><subject>environmental factors</subject><subject>Escarpments</subject><subject>Forest management</subject><subject>forest trees</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Growth</subject><subject>Heterogeneity</subject><subject>Limestone</subject><subject>Niagara escarpment</subject><subject>old-growth forests</subject><subject>Plant growth</subject><subject>plant morphology</subject><subject>prediction</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>statistical models</subject><subject>stem form</subject><subject>Thuja occidentalis</subject><subject>tree age</subject><subject>tree growth</subject><subject>Trees</subject><issn>0045-5067</issn><issn>1208-6037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqV0ltrFDEUAOAgCq5V_AkOgorC1Nwm2fGtFC-FomJX8C2cZpLZLLPJNpmB-u89ZUrran2QPOTCl5Pk5BDylNFDxkT79gdd1kywe2TBOA4VFfo-WVAqm7qhSj8kj0rZUEqFEnRB3n3Nrgt2DLGvxrWroHdV8hVEG1wcq9V62kCVrA0dTmEIpUqxskPwvjwmDzwMxT257g_I6sP71fGn-vTLx5Pjo9PaNroZa864bxWHVkm8S9eC5pwLLqzVWsiuOV8Krpg4V6C0spR2AqRwrJNUS4YvOiAv57C7nC4mV0azDcW6YYDo0lQMp41iXGiEz_-AmzTliFczXCCSS6UQ1TPqYXAmRJ_GDLZ30WUYUnQ-4PIRa7latpi_26B73u7ChfkdHd6BsHVuG-ydUV_vbUAzusuxh6kUc3L27T_s5337arY2p1Ky82aXwxbyT8OouaoOg9VhsDpQvrhOFhQLg89XP15uOGcM64br2-zHbLMrDrJd36jLOZjZdR7hm3_Dv09_NmMPyUCf8eTvZ5wyQVmjZSu1-AX-CtXK</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Matthes, Uta</creator><creator>Kelly, Peter E</creator><creator>Larson, Douglas W</creator><general>National Research Council of Canada</general><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>U9A</scope></search><sort><creationdate>20081201</creationdate><title>Predicting the age of ancient Thuja occidentalis on cliffs</title><author>Matthes, Uta ; Kelly, Peter E ; Larson, Douglas W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-212f962a964603d9a7222323cc7734d5b832613b6a676c00d3a43e1d40741113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Age</topic><topic>Aging</topic><topic>Biological and medical sciences</topic><topic>cliff faces</topic><topic>cliffs</topic><topic>Conservation</topic><topic>dolomitic limestone</topic><topic>environmental factors</topic><topic>Escarpments</topic><topic>Forest management</topic><topic>forest trees</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Growth</topic><topic>Heterogeneity</topic><topic>Limestone</topic><topic>Niagara escarpment</topic><topic>old-growth forests</topic><topic>Plant growth</topic><topic>plant morphology</topic><topic>prediction</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>statistical models</topic><topic>stem form</topic><topic>Thuja occidentalis</topic><topic>tree age</topic><topic>tree growth</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthes, Uta</creatorcontrib><creatorcontrib>Kelly, Peter E</creatorcontrib><creatorcontrib>Larson, Douglas W</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Canadian journal of forest research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthes, Uta</au><au>Kelly, Peter E</au><au>Larson, Douglas W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the age of ancient Thuja occidentalis on cliffs</atitle><jtitle>Canadian journal of forest research</jtitle><addtitle>Revue canadienne de recherche forestière</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>38</volume><issue>12</issue><spage>2923</spage><epage>2931</epage><pages>2923-2931</pages><issn>0045-5067</issn><eissn>1208-6037</eissn><coden>CJFRAR</coden><abstract>In rocky, heterogeneous environments that support old-growth forests, the relationship between tree size and age is weaker than it is for trees growing in productive and homogeneous habitats. To assist in the management and conservation of ancient forests on rocky land of low productivity, it would be useful if the relationships among age, environmental heterogeneity, and morphological variability could be understood and used to develop predictive models of longevity so that extensive core sampling of trees would not be required. Here we sampled 296 mature Thuja occidentalis L. growing on limestone cliffs along the Niagara Escarpment, southern Ontario, Canada. We measured a variety of site conditions and morphological traits, including age, which varied from 51 to 1316 years. We then used redundancy analysis and multiple regression to model the relationships among age, morphology, growth rate, and environment, resulting in quantitative models predicting tree age from four subsets of variables. We subsequently tested the models on 60 additional trees not used to build the models and found that they predicted up to 78% of the variation in actual tree age. This approach could be adopted for use in other forest types to predict the age of trees without using tree-ring analysis.</abstract><cop>Ottawa, ON</cop><pub>National Research Council of Canada</pub><doi>10.1139/X08-131</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-5067
ispartof Canadian journal of forest research, 2008-12, Vol.38 (12), p.2923-2931
issn 0045-5067
1208-6037
language eng
recordid cdi_gale_incontextgauss_ISN_A192689120
source Alma/SFX Local Collection
subjects Age
Aging
Biological and medical sciences
cliff faces
cliffs
Conservation
dolomitic limestone
environmental factors
Escarpments
Forest management
forest trees
Forestry
Fundamental and applied biological sciences. Psychology
Growth
Heterogeneity
Limestone
Niagara escarpment
old-growth forests
Plant growth
plant morphology
prediction
Prediction models
Regression analysis
statistical models
stem form
Thuja occidentalis
tree age
tree growth
Trees
title Predicting the age of ancient Thuja occidentalis on cliffs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20age%20of%20ancient%20Thuja%20occidentalis%20on%20cliffs&rft.jtitle=Canadian%20journal%20of%20forest%20research&rft.au=Matthes,%20Uta&rft.date=2008-12-01&rft.volume=38&rft.issue=12&rft.spage=2923&rft.epage=2931&rft.pages=2923-2931&rft.issn=0045-5067&rft.eissn=1208-6037&rft.coden=CJFRAR&rft_id=info:doi/10.1139/X08-131&rft_dat=%3Cgale_fao_a%3EA192689120%3C/gale_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230564866&rft_id=info:pmid/&rft_galeid=A192689120&rfr_iscdi=true