Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
The advancement of Industry 4.0 and Industrial Internet of Things (IIoT) has laid more emphasis on reducing the parameter amount and storage space of the model in addition to the automatic and accurate fault diagnosis. In this case, this paper proposes a lightweight convolutional neural network (LCN...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-08, Vol.16 (8), p.e0256287-e0256287 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0256287 |
---|---|
container_issue | 8 |
container_start_page | e0256287 |
container_title | PloS one |
container_volume | 16 |
creator | Yan, Jing Liu, Tingliang Ye, Xinyu Jing, Qianzhen Dai, Yuannan |
description | The advancement of Industry 4.0 and Industrial Internet of Things (IIoT) has laid more emphasis on reducing the parameter amount and storage space of the model in addition to the automatic and accurate fault diagnosis. In this case, this paper proposes a lightweight convolutional neural network (LCNN) method for intelligent fault diagnosis of rotating machinery, which can largely satisfy the need of less parameter amount and storage space as well as high accuracy. First, light-weight convolution blocks are constructed through basic elements such as spatial separable convolutions with the aim to effectively reduce model parameters. Secondly, the LCNN model for the intelligent fault diagnosis is constructed via lightweight convolution blocks instead of the tradi-tional convolution operation. Finally, to address the "black box" problem, the entire network is visualized through Tensorboard and t-distribution stochastic neighbor embedding. The results demonstrate that when the number of lightweight convolutional blocks reaches 6, the diagnosis accuracy of the LCNN model exceeds 99.9%. And the proposed model has become the most robust with parameters significantly decreasing. Furthermore, the proposed LCNN model has realized accurate, automatic, and robust fault diagnosis of rotating machinery, which makes it more suitable for deployment under the IIoT context. |
doi_str_mv | 10.1371/journal.pone.0256287 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_gale_incontextgauss_IOV_A673321013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A673321013</galeid><doaj_id>oai_doaj_org_article_a03543f87a544c40b1e2f7391fcfb6ba</doaj_id><sourcerecordid>A673321013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-1dba4a2d8b7bbb34526a736ed6d3c50e0368a311bd0297cdfb7778bc8cef85553</originalsourceid><addsrcrecordid>eNqNk1tr2zAUx83YWLts32BshsHYHpJJ1tUvg1J2CRQK3eVpICRZtpU5UmrJ6frtpyRuiUcfhkASR7_z1zlHOln2EoIFRAx-WPmhd7JbbLwzC1AQWnD2KDuFJSrmtADo8dH-JHsWwgoAgjilT7MThDFipOSn2a8rH2W0rsnXUrfWmf42r-XQxbyysnE-2JArGUyVe5fL3Pmt6fLONm28Mbs5195tfTdE61MwuTNDv1_ije9_P8-e1LIL5sW4zrIfnz99P_86v7j8sjw_u5hrWhZxDislsSwqrphSCmFSUMkQNRWtkCbAAES5RBCqChQl01WtGGNcaa5NzQkhaJa9PuhuOh_EWJggUk1wWZQE80QsD0Tl5UpseruW_a3w0oq9wfeNkH20ujNCAkQwqjmTBGONgYKmqBkqYa1rRZVMWh_H2wa1NpU2LqacJ6LTE2db0fit4IiXuKRJ4N0o0PvrwYQo1jZo03XSGT_s46YAAZKmWfbmH_Th7EaqkSkB62qf7tU7UXFGGUIFBBAlavEAlUZl1jY9o6ltsk8c3k8cEhPNn9jIIQSx_Hb1_-zlzyn79ohtjexiG8Y_FKYgPoC69yH0pr4vMgRi1wR31RC7JhBjEyS3V8cPdO909-vRX6YhAxo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564929548</pqid></control><display><type>article</type><title>Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yan, Jing ; Liu, Tingliang ; Ye, Xinyu ; Jing, Qianzhen ; Dai, Yuannan</creator><contributor>Chen, Chi-Hua</contributor><creatorcontrib>Yan, Jing ; Liu, Tingliang ; Ye, Xinyu ; Jing, Qianzhen ; Dai, Yuannan ; Chen, Chi-Hua</creatorcontrib><description>The advancement of Industry 4.0 and Industrial Internet of Things (IIoT) has laid more emphasis on reducing the parameter amount and storage space of the model in addition to the automatic and accurate fault diagnosis. In this case, this paper proposes a lightweight convolutional neural network (LCNN) method for intelligent fault diagnosis of rotating machinery, which can largely satisfy the need of less parameter amount and storage space as well as high accuracy. First, light-weight convolution blocks are constructed through basic elements such as spatial separable convolutions with the aim to effectively reduce model parameters. Secondly, the LCNN model for the intelligent fault diagnosis is constructed via lightweight convolution blocks instead of the tradi-tional convolution operation. Finally, to address the "black box" problem, the entire network is visualized through Tensorboard and t-distribution stochastic neighbor embedding. The results demonstrate that when the number of lightweight convolutional blocks reaches 6, the diagnosis accuracy of the LCNN model exceeds 99.9%. And the proposed model has become the most robust with parameters significantly decreasing. Furthermore, the proposed LCNN model has realized accurate, automatic, and robust fault diagnosis of rotating machinery, which makes it more suitable for deployment under the IIoT context.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0256287</identifier><identifier>PMID: 34437598</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Analysis ; Artificial neural networks ; Bearings (Machinery) ; Biology and Life Sciences ; Computer and Information Sciences ; Convolution ; Deep learning ; Embedding ; Engineering and Technology ; Fault diagnosis ; Humans ; Industrial applications ; Industrial Internet of Things ; Intelligence ; Internet of Things ; Internet of Things - standards ; Laboratories ; Lightweight ; Machinery ; Magneto-electric machines ; Mathematical models ; Medical diagnosis ; Methods ; Models, Theoretical ; Neural networks ; Neural Networks, Computer ; Parameter robustness ; Physical Sciences ; Power ; Principal components analysis ; Research and Analysis Methods ; Robustness ; Rotating machinery ; Signal processing ; Social Sciences ; Stochastic Processes ; Stochasticity ; Structure ; Vibration ; Wavelet Analysis ; Wavelet transforms ; Weight reduction</subject><ispartof>PloS one, 2021-08, Vol.16 (8), p.e0256287-e0256287</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Yan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Yan et al 2021 Yan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-1dba4a2d8b7bbb34526a736ed6d3c50e0368a311bd0297cdfb7778bc8cef85553</citedby><cites>FETCH-LOGICAL-c692t-1dba4a2d8b7bbb34526a736ed6d3c50e0368a311bd0297cdfb7778bc8cef85553</cites><orcidid>0000-0002-8456-2056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389496/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389496/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34437598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Chi-Hua</contributor><creatorcontrib>Yan, Jing</creatorcontrib><creatorcontrib>Liu, Tingliang</creatorcontrib><creatorcontrib>Ye, Xinyu</creatorcontrib><creatorcontrib>Jing, Qianzhen</creatorcontrib><creatorcontrib>Dai, Yuannan</creatorcontrib><title>Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The advancement of Industry 4.0 and Industrial Internet of Things (IIoT) has laid more emphasis on reducing the parameter amount and storage space of the model in addition to the automatic and accurate fault diagnosis. In this case, this paper proposes a lightweight convolutional neural network (LCNN) method for intelligent fault diagnosis of rotating machinery, which can largely satisfy the need of less parameter amount and storage space as well as high accuracy. First, light-weight convolution blocks are constructed through basic elements such as spatial separable convolutions with the aim to effectively reduce model parameters. Secondly, the LCNN model for the intelligent fault diagnosis is constructed via lightweight convolution blocks instead of the tradi-tional convolution operation. Finally, to address the "black box" problem, the entire network is visualized through Tensorboard and t-distribution stochastic neighbor embedding. The results demonstrate that when the number of lightweight convolutional blocks reaches 6, the diagnosis accuracy of the LCNN model exceeds 99.9%. And the proposed model has become the most robust with parameters significantly decreasing. Furthermore, the proposed LCNN model has realized accurate, automatic, and robust fault diagnosis of rotating machinery, which makes it more suitable for deployment under the IIoT context.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Bearings (Machinery)</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Embedding</subject><subject>Engineering and Technology</subject><subject>Fault diagnosis</subject><subject>Humans</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>Intelligence</subject><subject>Internet of Things</subject><subject>Internet of Things - standards</subject><subject>Laboratories</subject><subject>Lightweight</subject><subject>Machinery</subject><subject>Magneto-electric machines</subject><subject>Mathematical models</subject><subject>Medical diagnosis</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Parameter robustness</subject><subject>Physical Sciences</subject><subject>Power</subject><subject>Principal components analysis</subject><subject>Research and Analysis Methods</subject><subject>Robustness</subject><subject>Rotating machinery</subject><subject>Signal processing</subject><subject>Social Sciences</subject><subject>Stochastic Processes</subject><subject>Stochasticity</subject><subject>Structure</subject><subject>Vibration</subject><subject>Wavelet Analysis</subject><subject>Wavelet transforms</subject><subject>Weight reduction</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tr2zAUx83YWLts32BshsHYHpJJ1tUvg1J2CRQK3eVpICRZtpU5UmrJ6frtpyRuiUcfhkASR7_z1zlHOln2EoIFRAx-WPmhd7JbbLwzC1AQWnD2KDuFJSrmtADo8dH-JHsWwgoAgjilT7MThDFipOSn2a8rH2W0rsnXUrfWmf42r-XQxbyysnE-2JArGUyVe5fL3Pmt6fLONm28Mbs5195tfTdE61MwuTNDv1_ije9_P8-e1LIL5sW4zrIfnz99P_86v7j8sjw_u5hrWhZxDislsSwqrphSCmFSUMkQNRWtkCbAAES5RBCqChQl01WtGGNcaa5NzQkhaJa9PuhuOh_EWJggUk1wWZQE80QsD0Tl5UpseruW_a3w0oq9wfeNkH20ujNCAkQwqjmTBGONgYKmqBkqYa1rRZVMWh_H2wa1NpU2LqacJ6LTE2db0fit4IiXuKRJ4N0o0PvrwYQo1jZo03XSGT_s46YAAZKmWfbmH_Th7EaqkSkB62qf7tU7UXFGGUIFBBAlavEAlUZl1jY9o6ltsk8c3k8cEhPNn9jIIQSx_Hb1_-zlzyn79ohtjexiG8Y_FKYgPoC69yH0pr4vMgRi1wR31RC7JhBjEyS3V8cPdO909-vRX6YhAxo</recordid><startdate>20210826</startdate><enddate>20210826</enddate><creator>Yan, Jing</creator><creator>Liu, Tingliang</creator><creator>Ye, Xinyu</creator><creator>Jing, Qianzhen</creator><creator>Dai, Yuannan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8456-2056</orcidid></search><sort><creationdate>20210826</creationdate><title>Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network</title><author>Yan, Jing ; Liu, Tingliang ; Ye, Xinyu ; Jing, Qianzhen ; Dai, Yuannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-1dba4a2d8b7bbb34526a736ed6d3c50e0368a311bd0297cdfb7778bc8cef85553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Bearings (Machinery)</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Embedding</topic><topic>Engineering and Technology</topic><topic>Fault diagnosis</topic><topic>Humans</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>Intelligence</topic><topic>Internet of Things</topic><topic>Internet of Things - standards</topic><topic>Laboratories</topic><topic>Lightweight</topic><topic>Machinery</topic><topic>Magneto-electric machines</topic><topic>Mathematical models</topic><topic>Medical diagnosis</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Parameter robustness</topic><topic>Physical Sciences</topic><topic>Power</topic><topic>Principal components analysis</topic><topic>Research and Analysis Methods</topic><topic>Robustness</topic><topic>Rotating machinery</topic><topic>Signal processing</topic><topic>Social Sciences</topic><topic>Stochastic Processes</topic><topic>Stochasticity</topic><topic>Structure</topic><topic>Vibration</topic><topic>Wavelet Analysis</topic><topic>Wavelet transforms</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jing</creatorcontrib><creatorcontrib>Liu, Tingliang</creatorcontrib><creatorcontrib>Ye, Xinyu</creatorcontrib><creatorcontrib>Jing, Qianzhen</creatorcontrib><creatorcontrib>Dai, Yuannan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jing</au><au>Liu, Tingliang</au><au>Ye, Xinyu</au><au>Jing, Qianzhen</au><au>Dai, Yuannan</au><au>Chen, Chi-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-08-26</date><risdate>2021</risdate><volume>16</volume><issue>8</issue><spage>e0256287</spage><epage>e0256287</epage><pages>e0256287-e0256287</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The advancement of Industry 4.0 and Industrial Internet of Things (IIoT) has laid more emphasis on reducing the parameter amount and storage space of the model in addition to the automatic and accurate fault diagnosis. In this case, this paper proposes a lightweight convolutional neural network (LCNN) method for intelligent fault diagnosis of rotating machinery, which can largely satisfy the need of less parameter amount and storage space as well as high accuracy. First, light-weight convolution blocks are constructed through basic elements such as spatial separable convolutions with the aim to effectively reduce model parameters. Secondly, the LCNN model for the intelligent fault diagnosis is constructed via lightweight convolution blocks instead of the tradi-tional convolution operation. Finally, to address the "black box" problem, the entire network is visualized through Tensorboard and t-distribution stochastic neighbor embedding. The results demonstrate that when the number of lightweight convolutional blocks reaches 6, the diagnosis accuracy of the LCNN model exceeds 99.9%. And the proposed model has become the most robust with parameters significantly decreasing. Furthermore, the proposed LCNN model has realized accurate, automatic, and robust fault diagnosis of rotating machinery, which makes it more suitable for deployment under the IIoT context.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34437598</pmid><doi>10.1371/journal.pone.0256287</doi><tpages>e0256287</tpages><orcidid>https://orcid.org/0000-0002-8456-2056</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-08, Vol.16 (8), p.e0256287-e0256287 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_gale_incontextgauss_IOV_A673321013 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Analysis Artificial neural networks Bearings (Machinery) Biology and Life Sciences Computer and Information Sciences Convolution Deep learning Embedding Engineering and Technology Fault diagnosis Humans Industrial applications Industrial Internet of Things Intelligence Internet of Things Internet of Things - standards Laboratories Lightweight Machinery Magneto-electric machines Mathematical models Medical diagnosis Methods Models, Theoretical Neural networks Neural Networks, Computer Parameter robustness Physical Sciences Power Principal components analysis Research and Analysis Methods Robustness Rotating machinery Signal processing Social Sciences Stochastic Processes Stochasticity Structure Vibration Wavelet Analysis Wavelet transforms Weight reduction |
title | Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotating%20machinery%20fault%20diagnosis%20based%20on%20a%20novel%20lightweight%20convolutional%20neural%20network&rft.jtitle=PloS%20one&rft.au=Yan,%20Jing&rft.date=2021-08-26&rft.volume=16&rft.issue=8&rft.spage=e0256287&rft.epage=e0256287&rft.pages=e0256287-e0256287&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0256287&rft_dat=%3Cgale_plos_%3EA673321013%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564929548&rft_id=info:pmid/34437598&rft_galeid=A673321013&rft_doaj_id=oai_doaj_org_article_a03543f87a544c40b1e2f7391fcfb6ba&rfr_iscdi=true |