Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p
Across eukaryotes, homopolymeric repeats of amino acids are enriched in regulatory proteins such as transcription factors and chromatin remodelers. These domains play important roles in signaling, binding, prion formation, and functional phase separation. Azf1p is a prion-forming yeast transcription...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-05, Vol.16 (5), p.e0247285-e0247285, Article 0247285 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Across eukaryotes, homopolymeric repeats of amino acids are enriched in regulatory proteins such as transcription factors and chromatin remodelers. These domains play important roles in signaling, binding, prion formation, and functional phase separation. Azf1p is a prion-forming yeast transcription factor that contains two homorepeat domains, a polyglutamine and a polyasparagine domain. In this work, we report a new phenotype for Azf1p and identify a large set of genes that are regulated by Azf1p during growth in glucose. We show that the polyasparagine (polyN) domain plays a subtle role in transcription but is dispensable for Azf1p localization and prion formation. Genes upregulated upon deletion of the polyN domain are enriched in functions related to carbon metabolism and storage. This domain may therefore be a useful target for engineering yeast strains for fermentation applications and small molecule production. We also report that both the polyasparagine and polyglutamine domains vary in length across strains of S. cerevisiae and propose a model for how this variation may impact protein function. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0247285 |