Energy transfer and influencing factors in soil during compaction

In China, large-area excavation and filling engineering has increased rapidly with the expansion of construction land. The quality of filling engineering is the most important guarantee for the stability of building structures. Among all research on fill soil, the compaction characteristics are sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-11, Vol.15 (11), p.e0242622-e0242622, Article 0242622
Hauptverfasser: Li, Jie, Bai, Xiaohong, Ma, Fuli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0242622
container_issue 11
container_start_page e0242622
container_title PloS one
container_volume 15
creator Li, Jie
Bai, Xiaohong
Ma, Fuli
description In China, large-area excavation and filling engineering has increased rapidly with the expansion of construction land. The quality of filling engineering is the most important guarantee for the stability of building structures. Among all research on fill soil, the compaction characteristics are significant for indicating the strength and stability of filling engineering. In this paper, two layers of loess fill soil were compacted by a self-manufactured test system with three different compaction energies. Based on the variation in the soil bottom pressure obtained in the tests, the influence of the compaction parameters on the soil bottom pressure was investigated. The results show that the compaction curve can be used instead of the curve of the change in soil bottom pressure with water content; as the soil density increases, the soil bottom pressure increases to the maximum. The relation of the energy consumption ratio of the soil bottom (sigma/sigma(z)) and the number of soil layers is exponential and reveals the stability of the soil skeleton formed during compaction. This paper describes the compaction characteristics of loess fill soil from the perspective of energy transfer, and the conclusions provide a theoretical basis for soil filling engineering.
doi_str_mv 10.1371/journal.pone.0242622
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_incontextgauss_IOV_A642356654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642356654</galeid><doaj_id>oai_doaj_org_article_122f75d58442427788629b3771488bb1</doaj_id><sourcerecordid>A642356654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5d89ce8cee22cdfb89016eaeec682ab2c4050b6e1da009cc44e65dc1864bf55f3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QHBFFkxnw3vRGGYdWBhQW_bkOannaydJLZpFX335vudIep7MXSi4ST57w55-Rtlr3EaIFpjj9e-T443S523sECEUYEIY-yU1xQMhcE0cdH-5PsWYxXCHEqhXianVBKsJCYnWbLcwehuZl1QbtYQ5hpV82sq9senLGumdXadD7EFJtFb9tZ1YchbPx2l06sd8-zJ7VuI7wY17Ps5-fzH6uv84vLL-vV8mJuREG6Oa9kYUAaAEJMVZeyQFiABjBCEl0SwxBHpQBcaYQKYxgDwSuDpWBlzXlNz7LXe91d66Mau4-KMEEE5UWRJ2K9Jyqvr9Qu2K0ON8prq24DPjRKh86aFhQmpM55xSVjaXJ5LqUgRUnzHDMpyxInrU_jbX25hcqASxNqJ6LTE2c3qvG_VS5yWYgiCbwbBYK_7iF2amujgbbVDnx_WzdFhaRyqPvNf-j93Y1Uo1MD6Yl8utcMomopGKFcCM4StbiHSl8FW2uSVWqb4pOE95OExHTwt2t0H6Naf__2cPby15R9e8RuQLfdJvq2HywTpyDbgyb4GAPUhyFjpAan301DDU5Xo9NT2qvjBzok3Vk7AXIP_IHS19HYZGg4YCj9DAUXnPK0I3hlOz1UtvK961Lqh4en0n86ixhe</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462635997</pqid></control><display><type>article</type><title>Energy transfer and influencing factors in soil during compaction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Jie ; Bai, Xiaohong ; Ma, Fuli</creator><contributor>Aschonitis, Vassilis G.</contributor><creatorcontrib>Li, Jie ; Bai, Xiaohong ; Ma, Fuli ; Aschonitis, Vassilis G.</creatorcontrib><description>In China, large-area excavation and filling engineering has increased rapidly with the expansion of construction land. The quality of filling engineering is the most important guarantee for the stability of building structures. Among all research on fill soil, the compaction characteristics are significant for indicating the strength and stability of filling engineering. In this paper, two layers of loess fill soil were compacted by a self-manufactured test system with three different compaction energies. Based on the variation in the soil bottom pressure obtained in the tests, the influence of the compaction parameters on the soil bottom pressure was investigated. The results show that the compaction curve can be used instead of the curve of the change in soil bottom pressure with water content; as the soil density increases, the soil bottom pressure increases to the maximum. The relation of the energy consumption ratio of the soil bottom (sigma/sigma(z)) and the number of soil layers is exponential and reveals the stability of the soil skeleton formed during compaction. This paper describes the compaction characteristics of loess fill soil from the perspective of energy transfer, and the conclusions provide a theoretical basis for soil filling engineering.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242622</identifier><identifier>PMID: 33216814</identifier><language>eng</language><publisher>SAN FRANCISCO: Public Library Science</publisher><subject>Analysis ; Bottom pressure ; China ; Civil engineering ; Compacted soils ; Compaction ; Construction ; Earth Sciences ; Energy ; Energy consumption ; Energy Transfer ; Energy transformation ; Engineering ; Engineering and Technology ; Engineering research ; Excavation ; Laboratories ; Loess ; Mechanical properties ; Moisture content ; Multidisciplinary Sciences ; Physical properties ; Physical Sciences ; Pressure ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Sensors ; Shear strength ; Soil - chemistry ; Soil compaction ; Soil density ; Soil investigations ; Soil layers ; Soil stability ; Soil stabilization ; Soil structure ; Soil water ; Soils ; Strain gauges ; Structural stability ; Water content</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242622-e0242622, Article 0242622</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Li et al 2020 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000595653500021</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c692t-5d89ce8cee22cdfb89016eaeec682ab2c4050b6e1da009cc44e65dc1864bf55f3</citedby><cites>FETCH-LOGICAL-c692t-5d89ce8cee22cdfb89016eaeec682ab2c4050b6e1da009cc44e65dc1864bf55f3</cites><orcidid>0000-0003-0583-6192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7678969/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7678969/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,2930,23873,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33216814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aschonitis, Vassilis G.</contributor><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Bai, Xiaohong</creatorcontrib><creatorcontrib>Ma, Fuli</creatorcontrib><title>Energy transfer and influencing factors in soil during compaction</title><title>PloS one</title><addtitle>PLOS ONE</addtitle><addtitle>PLoS One</addtitle><description>In China, large-area excavation and filling engineering has increased rapidly with the expansion of construction land. The quality of filling engineering is the most important guarantee for the stability of building structures. Among all research on fill soil, the compaction characteristics are significant for indicating the strength and stability of filling engineering. In this paper, two layers of loess fill soil were compacted by a self-manufactured test system with three different compaction energies. Based on the variation in the soil bottom pressure obtained in the tests, the influence of the compaction parameters on the soil bottom pressure was investigated. The results show that the compaction curve can be used instead of the curve of the change in soil bottom pressure with water content; as the soil density increases, the soil bottom pressure increases to the maximum. The relation of the energy consumption ratio of the soil bottom (sigma/sigma(z)) and the number of soil layers is exponential and reveals the stability of the soil skeleton formed during compaction. This paper describes the compaction characteristics of loess fill soil from the perspective of energy transfer, and the conclusions provide a theoretical basis for soil filling engineering.</description><subject>Analysis</subject><subject>Bottom pressure</subject><subject>China</subject><subject>Civil engineering</subject><subject>Compacted soils</subject><subject>Compaction</subject><subject>Construction</subject><subject>Earth Sciences</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy Transfer</subject><subject>Energy transformation</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Engineering research</subject><subject>Excavation</subject><subject>Laboratories</subject><subject>Loess</subject><subject>Mechanical properties</subject><subject>Moisture content</subject><subject>Multidisciplinary Sciences</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Pressure</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Sensors</subject><subject>Shear strength</subject><subject>Soil - chemistry</subject><subject>Soil compaction</subject><subject>Soil density</subject><subject>Soil investigations</subject><subject>Soil layers</subject><subject>Soil stability</subject><subject>Soil stabilization</subject><subject>Soil structure</subject><subject>Soil water</subject><subject>Soils</subject><subject>Strain gauges</subject><subject>Structural stability</subject><subject>Water content</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QHBFFkxnw3vRGGYdWBhQW_bkOannaydJLZpFX335vudIep7MXSi4ST57w55-Rtlr3EaIFpjj9e-T443S523sECEUYEIY-yU1xQMhcE0cdH-5PsWYxXCHEqhXianVBKsJCYnWbLcwehuZl1QbtYQ5hpV82sq9senLGumdXadD7EFJtFb9tZ1YchbPx2l06sd8-zJ7VuI7wY17Ps5-fzH6uv84vLL-vV8mJuREG6Oa9kYUAaAEJMVZeyQFiABjBCEl0SwxBHpQBcaYQKYxgDwSuDpWBlzXlNz7LXe91d66Mau4-KMEEE5UWRJ2K9Jyqvr9Qu2K0ON8prq24DPjRKh86aFhQmpM55xSVjaXJ5LqUgRUnzHDMpyxInrU_jbX25hcqASxNqJ6LTE2c3qvG_VS5yWYgiCbwbBYK_7iF2amujgbbVDnx_WzdFhaRyqPvNf-j93Y1Uo1MD6Yl8utcMomopGKFcCM4StbiHSl8FW2uSVWqb4pOE95OExHTwt2t0H6Naf__2cPby15R9e8RuQLfdJvq2HywTpyDbgyb4GAPUhyFjpAan301DDU5Xo9NT2qvjBzok3Vk7AXIP_IHS19HYZGg4YCj9DAUXnPK0I3hlOz1UtvK961Lqh4en0n86ixhe</recordid><startdate>20201120</startdate><enddate>20201120</enddate><creator>Li, Jie</creator><creator>Bai, Xiaohong</creator><creator>Ma, Fuli</creator><general>Public Library Science</general><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0583-6192</orcidid></search><sort><creationdate>20201120</creationdate><title>Energy transfer and influencing factors in soil during compaction</title><author>Li, Jie ; Bai, Xiaohong ; Ma, Fuli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5d89ce8cee22cdfb89016eaeec682ab2c4050b6e1da009cc44e65dc1864bf55f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Bottom pressure</topic><topic>China</topic><topic>Civil engineering</topic><topic>Compacted soils</topic><topic>Compaction</topic><topic>Construction</topic><topic>Earth Sciences</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy Transfer</topic><topic>Energy transformation</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Engineering research</topic><topic>Excavation</topic><topic>Laboratories</topic><topic>Loess</topic><topic>Mechanical properties</topic><topic>Moisture content</topic><topic>Multidisciplinary Sciences</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Pressure</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Sensors</topic><topic>Shear strength</topic><topic>Soil - chemistry</topic><topic>Soil compaction</topic><topic>Soil density</topic><topic>Soil investigations</topic><topic>Soil layers</topic><topic>Soil stability</topic><topic>Soil stabilization</topic><topic>Soil structure</topic><topic>Soil water</topic><topic>Soils</topic><topic>Strain gauges</topic><topic>Structural stability</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Bai, Xiaohong</creatorcontrib><creatorcontrib>Ma, Fuli</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jie</au><au>Bai, Xiaohong</au><au>Ma, Fuli</au><au>Aschonitis, Vassilis G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy transfer and influencing factors in soil during compaction</atitle><jtitle>PloS one</jtitle><stitle>PLOS ONE</stitle><addtitle>PLoS One</addtitle><date>2020-11-20</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242622</spage><epage>e0242622</epage><pages>e0242622-e0242622</pages><artnum>0242622</artnum><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In China, large-area excavation and filling engineering has increased rapidly with the expansion of construction land. The quality of filling engineering is the most important guarantee for the stability of building structures. Among all research on fill soil, the compaction characteristics are significant for indicating the strength and stability of filling engineering. In this paper, two layers of loess fill soil were compacted by a self-manufactured test system with three different compaction energies. Based on the variation in the soil bottom pressure obtained in the tests, the influence of the compaction parameters on the soil bottom pressure was investigated. The results show that the compaction curve can be used instead of the curve of the change in soil bottom pressure with water content; as the soil density increases, the soil bottom pressure increases to the maximum. The relation of the energy consumption ratio of the soil bottom (sigma/sigma(z)) and the number of soil layers is exponential and reveals the stability of the soil skeleton formed during compaction. This paper describes the compaction characteristics of loess fill soil from the perspective of energy transfer, and the conclusions provide a theoretical basis for soil filling engineering.</abstract><cop>SAN FRANCISCO</cop><pub>Public Library Science</pub><pmid>33216814</pmid><doi>10.1371/journal.pone.0242622</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0583-6192</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-11, Vol.15 (11), p.e0242622-e0242622, Article 0242622
issn 1932-6203
1932-6203
language eng
recordid cdi_gale_incontextgauss_IOV_A642356654
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Bottom pressure
China
Civil engineering
Compacted soils
Compaction
Construction
Earth Sciences
Energy
Energy consumption
Energy Transfer
Energy transformation
Engineering
Engineering and Technology
Engineering research
Excavation
Laboratories
Loess
Mechanical properties
Moisture content
Multidisciplinary Sciences
Physical properties
Physical Sciences
Pressure
Science & Technology
Science & Technology - Other Topics
Sensors
Shear strength
Soil - chemistry
Soil compaction
Soil density
Soil investigations
Soil layers
Soil stability
Soil stabilization
Soil structure
Soil water
Soils
Strain gauges
Structural stability
Water content
title Energy transfer and influencing factors in soil during compaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-07T09%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20transfer%20and%20influencing%20factors%20in%20soil%20during%20compaction&rft.jtitle=PloS%20one&rft.au=Li,%20Jie&rft.date=2020-11-20&rft.volume=15&rft.issue=11&rft.spage=e0242622&rft.epage=e0242622&rft.pages=e0242622-e0242622&rft.artnum=0242622&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242622&rft_dat=%3Cgale_webof%3EA642356654%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462635997&rft_id=info:pmid/33216814&rft_galeid=A642356654&rft_doaj_id=oai_doaj_org_article_122f75d58442427788629b3771488bb1&rfr_iscdi=true