A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU
Short text classification is a research focus for natural language processing (NLP), which is widely used in news classification, sentiment analysis, mail filtering and other fields. In recent years, deep learning techniques are applied to text classification and has made some progress. Different fr...
Gespeichert in:
Veröffentlicht in: | Journal of organizational and end user computing 2021-11, Vol.33 (6), p.1-21 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | Journal of organizational and end user computing |
container_volume | 33 |
creator | Bao, Tong Ren, Ni Luo, Rui Wang, Baojia Shen, Gengyu Guo, Ting |
description | Short text classification is a research focus for natural language processing (NLP), which is widely used in news classification, sentiment analysis, mail filtering and other fields. In recent years, deep learning techniques are applied to text classification and has made some progress. Different from ordinary text classification, short text has the problem of less vocabulary and feature sparsity, which raise higher request for text semantic feature representation. To address this issue, this paper propose a feature fusion framework based on the Bidirectional Encoder Representations from Transformers (BERT). In this hybrid method, BERT is used to train word vector representation. Convolutional neural network (CNN) capture static features. As a supplement, a bi-gated recurrent neural network (BiGRU) is adopted to capture contextual features. Furthermore, an attention mechanism is introduced to assign the weight of salient words. The experimental results confirmed that the proposed model significantly outperforms the other state-of-the-art baseline methods. |
doi_str_mv | 10.4018/JOEUC.294580 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_incontextgauss_8GL_A759135151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759135151</galeid><sourcerecordid>A759135151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-712eb49db785e61bda9930118919960b4503b25f406fc8568856523f8af72e3a3</originalsourceid><addsrcrecordid>eNqNkltLIzEUgAdZQVd98wcE9mnBqbnO5bEdurVSW6jtc8hkkjEyTSQZYf33xk5fCkUkhITDdw6Hc74kuUVwRCEq7h9X0201wiVlBTxLLhGjWcogwr8Of4wJvUh-h_AKIY4Mu0z4GEym6006EUE14OGj9qYBzy_O92Cj_veg6kQIRhspeuMseHKN6sDcSuffnI8x24JquQTCNmDc98p-UYdiEzNbb6-Tcy26oG4O71Wy_TfdVA_pYjWbV-NFKmlO-zRHWNW0bOq8YCpDdSPKkkCEihKVZQZryiCpMdMUZloWLCviZZjoQugcKyLIVfJnqNuKTnFjteu9kDsTJB_nrESEIYYilZ6gWmWVF52zSpsYPuJHJ_h4GrUz8mTC36OEyPRxjK14D4HPn5c_ZovZ4rvGD6x0XadaxeMoq9Uxfzfw0rsQvNL8zZud8B8cQf7lCt-7wgdXIl4NuGkNf3Xv3sZd8fWG7zfJBy34XgsetThZg5BPHHbA7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU</title><source>Alma/SFX Local Collection</source><creator>Bao, Tong ; Ren, Ni ; Luo, Rui ; Wang, Baojia ; Shen, Gengyu ; Guo, Ting</creator><creatorcontrib>Bao, Tong ; Ren, Ni ; Luo, Rui ; Wang, Baojia ; Shen, Gengyu ; Guo, Ting</creatorcontrib><description>Short text classification is a research focus for natural language processing (NLP), which is widely used in news classification, sentiment analysis, mail filtering and other fields. In recent years, deep learning techniques are applied to text classification and has made some progress. Different from ordinary text classification, short text has the problem of less vocabulary and feature sparsity, which raise higher request for text semantic feature representation. To address this issue, this paper propose a feature fusion framework based on the Bidirectional Encoder Representations from Transformers (BERT). In this hybrid method, BERT is used to train word vector representation. Convolutional neural network (CNN) capture static features. As a supplement, a bi-gated recurrent neural network (BiGRU) is adopted to capture contextual features. Furthermore, an attention mechanism is introduced to assign the weight of salient words. The experimental results confirmed that the proposed model significantly outperforms the other state-of-the-art baseline methods.</description><identifier>ISSN: 1546-2234</identifier><identifier>EISSN: 1546-5012</identifier><identifier>DOI: 10.4018/JOEUC.294580</identifier><language>eng</language><publisher>IGI Global</publisher><subject>Analysis ; Artificial neural networks ; Computational linguistics ; Language processing ; Natural language interfaces ; Natural language processing ; Neural network ; Neural networks</subject><ispartof>Journal of organizational and end user computing, 2021-11, Vol.33 (6), p.1-21</ispartof><rights>COPYRIGHT 2021 IGI Global</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-712eb49db785e61bda9930118919960b4503b25f406fc8568856523f8af72e3a3</citedby><cites>FETCH-LOGICAL-c474t-712eb49db785e61bda9930118919960b4503b25f406fc8568856523f8af72e3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bao, Tong</creatorcontrib><creatorcontrib>Ren, Ni</creatorcontrib><creatorcontrib>Luo, Rui</creatorcontrib><creatorcontrib>Wang, Baojia</creatorcontrib><creatorcontrib>Shen, Gengyu</creatorcontrib><creatorcontrib>Guo, Ting</creatorcontrib><title>A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU</title><title>Journal of organizational and end user computing</title><addtitle>Journal of Organizational and End User Computing</addtitle><description>Short text classification is a research focus for natural language processing (NLP), which is widely used in news classification, sentiment analysis, mail filtering and other fields. In recent years, deep learning techniques are applied to text classification and has made some progress. Different from ordinary text classification, short text has the problem of less vocabulary and feature sparsity, which raise higher request for text semantic feature representation. To address this issue, this paper propose a feature fusion framework based on the Bidirectional Encoder Representations from Transformers (BERT). In this hybrid method, BERT is used to train word vector representation. Convolutional neural network (CNN) capture static features. As a supplement, a bi-gated recurrent neural network (BiGRU) is adopted to capture contextual features. Furthermore, an attention mechanism is introduced to assign the weight of salient words. The experimental results confirmed that the proposed model significantly outperforms the other state-of-the-art baseline methods.</description><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Computational linguistics</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Neural network</subject><subject>Neural networks</subject><issn>1546-2234</issn><issn>1546-5012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkltLIzEUgAdZQVd98wcE9mnBqbnO5bEdurVSW6jtc8hkkjEyTSQZYf33xk5fCkUkhITDdw6Hc74kuUVwRCEq7h9X0201wiVlBTxLLhGjWcogwr8Of4wJvUh-h_AKIY4Mu0z4GEym6006EUE14OGj9qYBzy_O92Cj_veg6kQIRhspeuMseHKN6sDcSuffnI8x24JquQTCNmDc98p-UYdiEzNbb6-Tcy26oG4O71Wy_TfdVA_pYjWbV-NFKmlO-zRHWNW0bOq8YCpDdSPKkkCEihKVZQZryiCpMdMUZloWLCviZZjoQugcKyLIVfJnqNuKTnFjteu9kDsTJB_nrESEIYYilZ6gWmWVF52zSpsYPuJHJ_h4GrUz8mTC36OEyPRxjK14D4HPn5c_ZovZ4rvGD6x0XadaxeMoq9Uxfzfw0rsQvNL8zZud8B8cQf7lCt-7wgdXIl4NuGkNf3Xv3sZd8fWG7zfJBy34XgsetThZg5BPHHbA7Q</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bao, Tong</creator><creator>Ren, Ni</creator><creator>Luo, Rui</creator><creator>Wang, Baojia</creator><creator>Shen, Gengyu</creator><creator>Guo, Ting</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>ISN</scope></search><sort><creationdate>20211101</creationdate><title>A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU</title><author>Bao, Tong ; Ren, Ni ; Luo, Rui ; Wang, Baojia ; Shen, Gengyu ; Guo, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-712eb49db785e61bda9930118919960b4503b25f406fc8568856523f8af72e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Computational linguistics</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Neural network</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Tong</creatorcontrib><creatorcontrib>Ren, Ni</creatorcontrib><creatorcontrib>Luo, Rui</creatorcontrib><creatorcontrib>Wang, Baojia</creatorcontrib><creatorcontrib>Shen, Gengyu</creatorcontrib><creatorcontrib>Guo, Ting</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Canada</collection><jtitle>Journal of organizational and end user computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Tong</au><au>Ren, Ni</au><au>Luo, Rui</au><au>Wang, Baojia</au><au>Shen, Gengyu</au><au>Guo, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU</atitle><jtitle>Journal of organizational and end user computing</jtitle><addtitle>Journal of Organizational and End User Computing</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>33</volume><issue>6</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1546-2234</issn><eissn>1546-5012</eissn><abstract>Short text classification is a research focus for natural language processing (NLP), which is widely used in news classification, sentiment analysis, mail filtering and other fields. In recent years, deep learning techniques are applied to text classification and has made some progress. Different from ordinary text classification, short text has the problem of less vocabulary and feature sparsity, which raise higher request for text semantic feature representation. To address this issue, this paper propose a feature fusion framework based on the Bidirectional Encoder Representations from Transformers (BERT). In this hybrid method, BERT is used to train word vector representation. Convolutional neural network (CNN) capture static features. As a supplement, a bi-gated recurrent neural network (BiGRU) is adopted to capture contextual features. Furthermore, an attention mechanism is introduced to assign the weight of salient words. The experimental results confirmed that the proposed model significantly outperforms the other state-of-the-art baseline methods.</abstract><pub>IGI Global</pub><doi>10.4018/JOEUC.294580</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-2234 |
ispartof | Journal of organizational and end user computing, 2021-11, Vol.33 (6), p.1-21 |
issn | 1546-2234 1546-5012 |
language | eng |
recordid | cdi_gale_incontextgauss_8GL_A759135151 |
source | Alma/SFX Local Collection |
subjects | Analysis Artificial neural networks Computational linguistics Language processing Natural language interfaces Natural language processing Neural network Neural networks |
title | A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20BERT-Based%20Hybrid%20Short%20Text%20Classification%20Model%20Incorporating%20CNN%20and%20Attention-Based%20BiGRU&rft.jtitle=Journal%20of%20organizational%20and%20end%20user%20computing&rft.au=Bao,%20Tong&rft.date=2021-11-01&rft.volume=33&rft.issue=6&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1546-2234&rft.eissn=1546-5012&rft_id=info:doi/10.4018/JOEUC.294580&rft_dat=%3Cgale_cross%3EA759135151%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A759135151&rfr_iscdi=true |