A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU

Short text classification is a research focus for natural language processing (NLP), which is widely used in news classification, sentiment analysis, mail filtering and other fields. In recent years, deep learning techniques are applied to text classification and has made some progress. Different fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organizational and end user computing 2021-11, Vol.33 (6), p.1-21
Hauptverfasser: Bao, Tong, Ren, Ni, Luo, Rui, Wang, Baojia, Shen, Gengyu, Guo, Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 6
container_start_page 1
container_title Journal of organizational and end user computing
container_volume 33
creator Bao, Tong
Ren, Ni
Luo, Rui
Wang, Baojia
Shen, Gengyu
Guo, Ting
description Short text classification is a research focus for natural language processing (NLP), which is widely used in news classification, sentiment analysis, mail filtering and other fields. In recent years, deep learning techniques are applied to text classification and has made some progress. Different from ordinary text classification, short text has the problem of less vocabulary and feature sparsity, which raise higher request for text semantic feature representation. To address this issue, this paper propose a feature fusion framework based on the Bidirectional Encoder Representations from Transformers (BERT). In this hybrid method, BERT is used to train word vector representation. Convolutional neural network (CNN) capture static features. As a supplement, a bi-gated recurrent neural network (BiGRU) is adopted to capture contextual features. Furthermore, an attention mechanism is introduced to assign the weight of salient words. The experimental results confirmed that the proposed model significantly outperforms the other state-of-the-art baseline methods.
doi_str_mv 10.4018/JOEUC.294580
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_incontextgauss_8GL_A759135151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759135151</galeid><sourcerecordid>A759135151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-712eb49db785e61bda9930118919960b4503b25f406fc8568856523f8af72e3a3</originalsourceid><addsrcrecordid>eNqNkltLIzEUgAdZQVd98wcE9mnBqbnO5bEdurVSW6jtc8hkkjEyTSQZYf33xk5fCkUkhITDdw6Hc74kuUVwRCEq7h9X0201wiVlBTxLLhGjWcogwr8Of4wJvUh-h_AKIY4Mu0z4GEym6006EUE14OGj9qYBzy_O92Cj_veg6kQIRhspeuMseHKN6sDcSuffnI8x24JquQTCNmDc98p-UYdiEzNbb6-Tcy26oG4O71Wy_TfdVA_pYjWbV-NFKmlO-zRHWNW0bOq8YCpDdSPKkkCEihKVZQZryiCpMdMUZloWLCviZZjoQugcKyLIVfJnqNuKTnFjteu9kDsTJB_nrESEIYYilZ6gWmWVF52zSpsYPuJHJ_h4GrUz8mTC36OEyPRxjK14D4HPn5c_ZovZ4rvGD6x0XadaxeMoq9Uxfzfw0rsQvNL8zZud8B8cQf7lCt-7wgdXIl4NuGkNf3Xv3sZd8fWG7zfJBy34XgsetThZg5BPHHbA7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU</title><source>Alma/SFX Local Collection</source><creator>Bao, Tong ; Ren, Ni ; Luo, Rui ; Wang, Baojia ; Shen, Gengyu ; Guo, Ting</creator><creatorcontrib>Bao, Tong ; Ren, Ni ; Luo, Rui ; Wang, Baojia ; Shen, Gengyu ; Guo, Ting</creatorcontrib><description>Short text classification is a research focus for natural language processing (NLP), which is widely used in news classification, sentiment analysis, mail filtering and other fields. In recent years, deep learning techniques are applied to text classification and has made some progress. Different from ordinary text classification, short text has the problem of less vocabulary and feature sparsity, which raise higher request for text semantic feature representation. To address this issue, this paper propose a feature fusion framework based on the Bidirectional Encoder Representations from Transformers (BERT). In this hybrid method, BERT is used to train word vector representation. Convolutional neural network (CNN) capture static features. As a supplement, a bi-gated recurrent neural network (BiGRU) is adopted to capture contextual features. Furthermore, an attention mechanism is introduced to assign the weight of salient words. The experimental results confirmed that the proposed model significantly outperforms the other state-of-the-art baseline methods.</description><identifier>ISSN: 1546-2234</identifier><identifier>EISSN: 1546-5012</identifier><identifier>DOI: 10.4018/JOEUC.294580</identifier><language>eng</language><publisher>IGI Global</publisher><subject>Analysis ; Artificial neural networks ; Computational linguistics ; Language processing ; Natural language interfaces ; Natural language processing ; Neural network ; Neural networks</subject><ispartof>Journal of organizational and end user computing, 2021-11, Vol.33 (6), p.1-21</ispartof><rights>COPYRIGHT 2021 IGI Global</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-712eb49db785e61bda9930118919960b4503b25f406fc8568856523f8af72e3a3</citedby><cites>FETCH-LOGICAL-c474t-712eb49db785e61bda9930118919960b4503b25f406fc8568856523f8af72e3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bao, Tong</creatorcontrib><creatorcontrib>Ren, Ni</creatorcontrib><creatorcontrib>Luo, Rui</creatorcontrib><creatorcontrib>Wang, Baojia</creatorcontrib><creatorcontrib>Shen, Gengyu</creatorcontrib><creatorcontrib>Guo, Ting</creatorcontrib><title>A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU</title><title>Journal of organizational and end user computing</title><addtitle>Journal of Organizational and End User Computing</addtitle><description>Short text classification is a research focus for natural language processing (NLP), which is widely used in news classification, sentiment analysis, mail filtering and other fields. In recent years, deep learning techniques are applied to text classification and has made some progress. Different from ordinary text classification, short text has the problem of less vocabulary and feature sparsity, which raise higher request for text semantic feature representation. To address this issue, this paper propose a feature fusion framework based on the Bidirectional Encoder Representations from Transformers (BERT). In this hybrid method, BERT is used to train word vector representation. Convolutional neural network (CNN) capture static features. As a supplement, a bi-gated recurrent neural network (BiGRU) is adopted to capture contextual features. Furthermore, an attention mechanism is introduced to assign the weight of salient words. The experimental results confirmed that the proposed model significantly outperforms the other state-of-the-art baseline methods.</description><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Computational linguistics</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Neural network</subject><subject>Neural networks</subject><issn>1546-2234</issn><issn>1546-5012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkltLIzEUgAdZQVd98wcE9mnBqbnO5bEdurVSW6jtc8hkkjEyTSQZYf33xk5fCkUkhITDdw6Hc74kuUVwRCEq7h9X0201wiVlBTxLLhGjWcogwr8Of4wJvUh-h_AKIY4Mu0z4GEym6006EUE14OGj9qYBzy_O92Cj_veg6kQIRhspeuMseHKN6sDcSuffnI8x24JquQTCNmDc98p-UYdiEzNbb6-Tcy26oG4O71Wy_TfdVA_pYjWbV-NFKmlO-zRHWNW0bOq8YCpDdSPKkkCEihKVZQZryiCpMdMUZloWLCviZZjoQugcKyLIVfJnqNuKTnFjteu9kDsTJB_nrESEIYYilZ6gWmWVF52zSpsYPuJHJ_h4GrUz8mTC36OEyPRxjK14D4HPn5c_ZovZ4rvGD6x0XadaxeMoq9Uxfzfw0rsQvNL8zZud8B8cQf7lCt-7wgdXIl4NuGkNf3Xv3sZd8fWG7zfJBy34XgsetThZg5BPHHbA7Q</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bao, Tong</creator><creator>Ren, Ni</creator><creator>Luo, Rui</creator><creator>Wang, Baojia</creator><creator>Shen, Gengyu</creator><creator>Guo, Ting</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>ISN</scope></search><sort><creationdate>20211101</creationdate><title>A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU</title><author>Bao, Tong ; Ren, Ni ; Luo, Rui ; Wang, Baojia ; Shen, Gengyu ; Guo, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-712eb49db785e61bda9930118919960b4503b25f406fc8568856523f8af72e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Computational linguistics</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Neural network</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Tong</creatorcontrib><creatorcontrib>Ren, Ni</creatorcontrib><creatorcontrib>Luo, Rui</creatorcontrib><creatorcontrib>Wang, Baojia</creatorcontrib><creatorcontrib>Shen, Gengyu</creatorcontrib><creatorcontrib>Guo, Ting</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Canada</collection><jtitle>Journal of organizational and end user computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Tong</au><au>Ren, Ni</au><au>Luo, Rui</au><au>Wang, Baojia</au><au>Shen, Gengyu</au><au>Guo, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU</atitle><jtitle>Journal of organizational and end user computing</jtitle><addtitle>Journal of Organizational and End User Computing</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>33</volume><issue>6</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1546-2234</issn><eissn>1546-5012</eissn><abstract>Short text classification is a research focus for natural language processing (NLP), which is widely used in news classification, sentiment analysis, mail filtering and other fields. In recent years, deep learning techniques are applied to text classification and has made some progress. Different from ordinary text classification, short text has the problem of less vocabulary and feature sparsity, which raise higher request for text semantic feature representation. To address this issue, this paper propose a feature fusion framework based on the Bidirectional Encoder Representations from Transformers (BERT). In this hybrid method, BERT is used to train word vector representation. Convolutional neural network (CNN) capture static features. As a supplement, a bi-gated recurrent neural network (BiGRU) is adopted to capture contextual features. Furthermore, an attention mechanism is introduced to assign the weight of salient words. The experimental results confirmed that the proposed model significantly outperforms the other state-of-the-art baseline methods.</abstract><pub>IGI Global</pub><doi>10.4018/JOEUC.294580</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-2234
ispartof Journal of organizational and end user computing, 2021-11, Vol.33 (6), p.1-21
issn 1546-2234
1546-5012
language eng
recordid cdi_gale_incontextgauss_8GL_A759135151
source Alma/SFX Local Collection
subjects Analysis
Artificial neural networks
Computational linguistics
Language processing
Natural language interfaces
Natural language processing
Neural network
Neural networks
title A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20BERT-Based%20Hybrid%20Short%20Text%20Classification%20Model%20Incorporating%20CNN%20and%20Attention-Based%20BiGRU&rft.jtitle=Journal%20of%20organizational%20and%20end%20user%20computing&rft.au=Bao,%20Tong&rft.date=2021-11-01&rft.volume=33&rft.issue=6&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1546-2234&rft.eissn=1546-5012&rft_id=info:doi/10.4018/JOEUC.294580&rft_dat=%3Cgale_cross%3EA759135151%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A759135151&rfr_iscdi=true