A Signal Filtering Method for Magnetic Flux Leakage Detection of Rail Surface Defects Based on Minimum Entropy Deconvolution

Magnetic flux leakage (MFL) detection of rail surface defects is an important research field for railway traffic safety. Due to factors such as magnetization and material, it can generate background noise and reduce detection accuracy. To improve the detection signal strength and enhance the detecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of swarm intelligence research 2024-01, Vol.15 (1), p.1-11
Hauptverfasser: Liu, Jing, Su, Shoubao, Guo, Haifeng, Lu, Yuhua, Chen, Yuexia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title International journal of swarm intelligence research
container_volume 15
creator Liu, Jing
Su, Shoubao
Guo, Haifeng
Lu, Yuhua
Chen, Yuexia
description Magnetic flux leakage (MFL) detection of rail surface defects is an important research field for railway traffic safety. Due to factors such as magnetization and material, it can generate background noise and reduce detection accuracy. To improve the detection signal strength and enhance the detection rate of more minor defects, a signal filtering method based on minimum entropy deconvolution is proposed to denoise. By using the objective function method, the optimal inverse filter parameters are calculated, which are applied to the filtering detection of MFL signals of the rail surface. The detection results show that the peak-to-peak ratio of the defect signal and noise signal detected by this algorithm is 2.01, which is about 1.5 times that of the wavelet transform method and median filtering method. The defect signal is significantly enhanced, and the detection rate of minor defects on the rail surface can be effectively improved.
doi_str_mv 10.4018/IJSIR.332791
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A774413526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774413526</galeid><sourcerecordid>A774413526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-f735a425007373bd7a96b01726c623a256c305d8a160e016ce313a76e8c532b23</originalsourceid><addsrcrecordid>eNp9kU1rGzEQQJfSQkOSW3-AoNc6lTT62qPjxo2DTSFuz0KWtRul65UjaUsD-fGRu8G5hM5BI5inETOvqj4RfMEwUV8XN-vF7QUAlTV5V52QmslJTSV5f7wL-Fidp3SPS3AmJYeT6mmK1r7tTYfmvssu-r5FK5fvwhY1IaKVaXuXvUXzbviLls78Nq1D31x2NvvQo9CgW-M7tB5iY-yh0pRKQpcmuS0qwMr3fjfs0FWfY9g_FsCG_k_ohsPzs-pDY7rkzl_yafVrfvVzdj1Z_vi-mE2XEwsK8qSRwA2jHGMJEjZbaWqxwURSYQUFQ7mwgPlWGSKww0RYBwSMFE5ZDnRD4bT6PPbdx_AwuJT1fRhiGTppWmPGFEjyf0opqgQjtSrUl5FqTef0Zki-d6kcybd3ObVmSElPpWSMAC8bP-I2hpSia_Q--p2Jj5pgffCm_3nTo7eCz0bct_71-4MfffSjRz-6-HmrB-HwDNDdn5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904483712</pqid></control><display><type>article</type><title>A Signal Filtering Method for Magnetic Flux Leakage Detection of Rail Surface Defects Based on Minimum Entropy Deconvolution</title><source>AUTh Library subscriptions: ProQuest Central</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><creator>Liu, Jing ; Su, Shoubao ; Guo, Haifeng ; Lu, Yuhua ; Chen, Yuexia</creator><creatorcontrib>Liu, Jing ; Su, Shoubao ; Guo, Haifeng ; Lu, Yuhua ; Chen, Yuexia</creatorcontrib><description>Magnetic flux leakage (MFL) detection of rail surface defects is an important research field for railway traffic safety. Due to factors such as magnetization and material, it can generate background noise and reduce detection accuracy. To improve the detection signal strength and enhance the detection rate of more minor defects, a signal filtering method based on minimum entropy deconvolution is proposed to denoise. By using the objective function method, the optimal inverse filter parameters are calculated, which are applied to the filtering detection of MFL signals of the rail surface. The detection results show that the peak-to-peak ratio of the defect signal and noise signal detected by this algorithm is 2.01, which is about 1.5 times that of the wavelet transform method and median filtering method. The defect signal is significantly enhanced, and the detection rate of minor defects on the rail surface can be effectively improved.</description><identifier>ISSN: 1947-9263</identifier><identifier>EISSN: 1947-9271</identifier><identifier>DOI: 10.4018/IJSIR.332791</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Accuracy ; Algorithms ; Background noise ; Deconvolution ; Defects ; Entropy ; Fault diagnosis ; Feature selection ; Filtration ; Leak detection ; Magnetic fields ; Magnetic flux ; Magnetization ; Mathematical analysis ; Methods ; Noise ; Noise control ; Noise generation ; Nondestructive testing ; Railroads ; Signal processing ; Signal strength ; Surface defects ; Wavelet transforms</subject><ispartof>International journal of swarm intelligence research, 2024-01, Vol.15 (1), p.1-11</ispartof><rights>COPYRIGHT 2024 IGI Global</rights><rights>This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License (htpp://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the original work and original publication source are properly credited.</rights><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c383t-f735a425007373bd7a96b01726c623a256c305d8a160e016ce313a76e8c532b23</cites><orcidid>0000-0003-2036-7646 ; 0000-0001-6359-9442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2904483712?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21390,27926,27927,33746,43807,64387,64391,72471</link.rule.ids></links><search><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Su, Shoubao</creatorcontrib><creatorcontrib>Guo, Haifeng</creatorcontrib><creatorcontrib>Lu, Yuhua</creatorcontrib><creatorcontrib>Chen, Yuexia</creatorcontrib><title>A Signal Filtering Method for Magnetic Flux Leakage Detection of Rail Surface Defects Based on Minimum Entropy Deconvolution</title><title>International journal of swarm intelligence research</title><description>Magnetic flux leakage (MFL) detection of rail surface defects is an important research field for railway traffic safety. Due to factors such as magnetization and material, it can generate background noise and reduce detection accuracy. To improve the detection signal strength and enhance the detection rate of more minor defects, a signal filtering method based on minimum entropy deconvolution is proposed to denoise. By using the objective function method, the optimal inverse filter parameters are calculated, which are applied to the filtering detection of MFL signals of the rail surface. The detection results show that the peak-to-peak ratio of the defect signal and noise signal detected by this algorithm is 2.01, which is about 1.5 times that of the wavelet transform method and median filtering method. The defect signal is significantly enhanced, and the detection rate of minor defects on the rail surface can be effectively improved.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Background noise</subject><subject>Deconvolution</subject><subject>Defects</subject><subject>Entropy</subject><subject>Fault diagnosis</subject><subject>Feature selection</subject><subject>Filtration</subject><subject>Leak detection</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetization</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Noise</subject><subject>Noise control</subject><subject>Noise generation</subject><subject>Nondestructive testing</subject><subject>Railroads</subject><subject>Signal processing</subject><subject>Signal strength</subject><subject>Surface defects</subject><subject>Wavelet transforms</subject><issn>1947-9263</issn><issn>1947-9271</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1rGzEQQJfSQkOSW3-AoNc6lTT62qPjxo2DTSFuz0KWtRul65UjaUsD-fGRu8G5hM5BI5inETOvqj4RfMEwUV8XN-vF7QUAlTV5V52QmslJTSV5f7wL-Fidp3SPS3AmJYeT6mmK1r7tTYfmvssu-r5FK5fvwhY1IaKVaXuXvUXzbviLls78Nq1D31x2NvvQo9CgW-M7tB5iY-yh0pRKQpcmuS0qwMr3fjfs0FWfY9g_FsCG_k_ohsPzs-pDY7rkzl_yafVrfvVzdj1Z_vi-mE2XEwsK8qSRwA2jHGMJEjZbaWqxwURSYQUFQ7mwgPlWGSKww0RYBwSMFE5ZDnRD4bT6PPbdx_AwuJT1fRhiGTppWmPGFEjyf0opqgQjtSrUl5FqTef0Zki-d6kcybd3ObVmSElPpWSMAC8bP-I2hpSia_Q--p2Jj5pgffCm_3nTo7eCz0bct_71-4MfffSjRz-6-HmrB-HwDNDdn5A</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Liu, Jing</creator><creator>Su, Shoubao</creator><creator>Guo, Haifeng</creator><creator>Lu, Yuhua</creator><creator>Chen, Yuexia</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2036-7646</orcidid><orcidid>https://orcid.org/0000-0001-6359-9442</orcidid></search><sort><creationdate>20240101</creationdate><title>A Signal Filtering Method for Magnetic Flux Leakage Detection of Rail Surface Defects Based on Minimum Entropy Deconvolution</title><author>Liu, Jing ; Su, Shoubao ; Guo, Haifeng ; Lu, Yuhua ; Chen, Yuexia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-f735a425007373bd7a96b01726c623a256c305d8a160e016ce313a76e8c532b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Background noise</topic><topic>Deconvolution</topic><topic>Defects</topic><topic>Entropy</topic><topic>Fault diagnosis</topic><topic>Feature selection</topic><topic>Filtration</topic><topic>Leak detection</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetization</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Noise</topic><topic>Noise control</topic><topic>Noise generation</topic><topic>Nondestructive testing</topic><topic>Railroads</topic><topic>Signal processing</topic><topic>Signal strength</topic><topic>Surface defects</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Su, Shoubao</creatorcontrib><creatorcontrib>Guo, Haifeng</creatorcontrib><creatorcontrib>Lu, Yuhua</creatorcontrib><creatorcontrib>Chen, Yuexia</creatorcontrib><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of swarm intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jing</au><au>Su, Shoubao</au><au>Guo, Haifeng</au><au>Lu, Yuhua</au><au>Chen, Yuexia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Signal Filtering Method for Magnetic Flux Leakage Detection of Rail Surface Defects Based on Minimum Entropy Deconvolution</atitle><jtitle>International journal of swarm intelligence research</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1947-9263</issn><eissn>1947-9271</eissn><abstract>Magnetic flux leakage (MFL) detection of rail surface defects is an important research field for railway traffic safety. Due to factors such as magnetization and material, it can generate background noise and reduce detection accuracy. To improve the detection signal strength and enhance the detection rate of more minor defects, a signal filtering method based on minimum entropy deconvolution is proposed to denoise. By using the objective function method, the optimal inverse filter parameters are calculated, which are applied to the filtering detection of MFL signals of the rail surface. The detection results show that the peak-to-peak ratio of the defect signal and noise signal detected by this algorithm is 2.01, which is about 1.5 times that of the wavelet transform method and median filtering method. The defect signal is significantly enhanced, and the detection rate of minor defects on the rail surface can be effectively improved.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJSIR.332791</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2036-7646</orcidid><orcidid>https://orcid.org/0000-0001-6359-9442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1947-9263
ispartof International journal of swarm intelligence research, 2024-01, Vol.15 (1), p.1-11
issn 1947-9263
1947-9271
language eng
recordid cdi_gale_businessinsightsgauss_A774413526
source AUTh Library subscriptions: ProQuest Central; ProQuest Central UK/Ireland; Alma/SFX Local Collection
subjects Accuracy
Algorithms
Background noise
Deconvolution
Defects
Entropy
Fault diagnosis
Feature selection
Filtration
Leak detection
Magnetic fields
Magnetic flux
Magnetization
Mathematical analysis
Methods
Noise
Noise control
Noise generation
Nondestructive testing
Railroads
Signal processing
Signal strength
Surface defects
Wavelet transforms
title A Signal Filtering Method for Magnetic Flux Leakage Detection of Rail Surface Defects Based on Minimum Entropy Deconvolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Signal%20Filtering%20Method%20for%20Magnetic%20Flux%20Leakage%20Detection%20of%20Rail%20Surface%20Defects%20Based%20on%20Minimum%20Entropy%20Deconvolution&rft.jtitle=International%20journal%20of%20swarm%20intelligence%20research&rft.au=Liu,%20Jing&rft.date=2024-01-01&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1947-9263&rft.eissn=1947-9271&rft_id=info:doi/10.4018/IJSIR.332791&rft_dat=%3Cgale_cross%3EA774413526%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904483712&rft_id=info:pmid/&rft_galeid=A774413526&rfr_iscdi=true