An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks
This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and te...
Gespeichert in:
Veröffentlicht in: | International journal of system dynamics applications 2012-04, Vol.1 (2), p.44-59 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 2 |
container_start_page | 44 |
container_title | International journal of system dynamics applications |
container_volume | 1 |
creator | Abdel Aziz, M S Hassan, M A. Moustafa El-Zahab, E A |
description | This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and tested for different system conditions. Details of the design process and the results of performance using the proposed method are discussed. The results show the proposed technique effectiveness in detecting, classifying, and locating high impedance faults. The 3rd harmonics, magnitude and angle, for the 3 phase currents give superior results for fault detection as well as for fault location in High Impedance faults. The fundamental components magnitude and angle for the 3 phase currents give superior results for classification phase of High Impedance faults over other types of data inputs. |
doi_str_mv | 10.4018/ijsda.2012040104 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A760953658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760953658</galeid><sourcerecordid>A760953658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-96b667b27017dbcdc455f5087e47f3e53784b201f99f03bacc0eeb9afda80ca13</originalsourceid><addsrcrecordid>eNp1kc1v3CAQxVHUSI02ufeIlEsP3XQA25ijk3ablaLm0p4RxuCw9dougxXlvy_pVvmSihAD0m-e5vEI-cDgogBWfw477MwFB8Yhv6E4IiecVbBWUql3T3fJ35MzxB3kVUEpFDshrhlpE1PwwQYz0O2Y3DCE3o3W0UuDrqPNPMfJ2Dvqp0ivQ39Ht_vZdeaR2JhlSEib0QwPGJCGkX4JmGJolxSmkX536X6Kv_CUHHszoDv7V1fk5-brj6vr9c3tt-1Vc7O2opJpraq2qmTLJTDZtbazRVn6EmrpCumFK4Wsiza79Ep5EK2xFpxrlfGdqcEaJlbk40E3j_x7cZj0PqDNjszopgU1qyQrShB5r8j5G3Q3LTEbQc2V4AXwmotMfTpQvRmcbhcMo8N8YP6HhL1ZEHUjK1ClqMo643DAbZwQo_N6jmFv4oNmoB-T0n-T0s9J5ZbNoSX04XmEp0T0y0T0pfmfzgvvr4TecnruvPgDnhesRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932402823</pqid></control><display><type>article</type><title>An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Abdel Aziz, M S ; Hassan, M A. Moustafa ; El-Zahab, E A</creator><creatorcontrib>Abdel Aziz, M S ; Hassan, M A. Moustafa ; El-Zahab, E A</creatorcontrib><description>This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and tested for different system conditions. Details of the design process and the results of performance using the proposed method are discussed. The results show the proposed technique effectiveness in detecting, classifying, and locating high impedance faults. The 3rd harmonics, magnitude and angle, for the 3 phase currents give superior results for fault detection as well as for fault location in High Impedance faults. The fundamental components magnitude and angle for the 3 phase currents give superior results for classification phase of High Impedance faults over other types of data inputs.</description><identifier>ISSN: 2160-9772</identifier><identifier>EISSN: 2160-9799</identifier><identifier>DOI: 10.4018/ijsda.2012040104</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Adaptive systems ; Artificial intelligence ; Artificial neural networks ; Classification ; Dynamical systems ; Dynamics ; Fault detection ; Fault location ; Faults ; Fuzzy ; Fuzzy logic ; High impedance ; Methods ; Networks ; Phase current ; Simulation methods</subject><ispartof>International journal of system dynamics applications, 2012-04, Vol.1 (2), p.44-59</ispartof><rights>COPYRIGHT 2012 IGI Global</rights><rights>Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-96b667b27017dbcdc455f5087e47f3e53784b201f99f03bacc0eeb9afda80ca13</citedby><cites>FETCH-LOGICAL-c367t-96b667b27017dbcdc455f5087e47f3e53784b201f99f03bacc0eeb9afda80ca13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2932402823?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33531,33703,33704,33744,33745,34005,34006,34314,34315,43659,43787,43805,43953,44067,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Abdel Aziz, M S</creatorcontrib><creatorcontrib>Hassan, M A. Moustafa</creatorcontrib><creatorcontrib>El-Zahab, E A</creatorcontrib><title>An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks</title><title>International journal of system dynamics applications</title><description>This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and tested for different system conditions. Details of the design process and the results of performance using the proposed method are discussed. The results show the proposed technique effectiveness in detecting, classifying, and locating high impedance faults. The 3rd harmonics, magnitude and angle, for the 3 phase currents give superior results for fault detection as well as for fault location in High Impedance faults. The fundamental components magnitude and angle for the 3 phase currents give superior results for classification phase of High Impedance faults over other types of data inputs.</description><subject>Adaptive systems</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fault detection</subject><subject>Fault location</subject><subject>Faults</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>High impedance</subject><subject>Methods</subject><subject>Networks</subject><subject>Phase current</subject><subject>Simulation methods</subject><issn>2160-9772</issn><issn>2160-9799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1v3CAQxVHUSI02ufeIlEsP3XQA25ijk3ablaLm0p4RxuCw9dougxXlvy_pVvmSihAD0m-e5vEI-cDgogBWfw477MwFB8Yhv6E4IiecVbBWUql3T3fJ35MzxB3kVUEpFDshrhlpE1PwwQYz0O2Y3DCE3o3W0UuDrqPNPMfJ2Dvqp0ivQ39Ht_vZdeaR2JhlSEib0QwPGJCGkX4JmGJolxSmkX536X6Kv_CUHHszoDv7V1fk5-brj6vr9c3tt-1Vc7O2opJpraq2qmTLJTDZtbazRVn6EmrpCumFK4Wsiza79Ep5EK2xFpxrlfGdqcEaJlbk40E3j_x7cZj0PqDNjszopgU1qyQrShB5r8j5G3Q3LTEbQc2V4AXwmotMfTpQvRmcbhcMo8N8YP6HhL1ZEHUjK1ClqMo643DAbZwQo_N6jmFv4oNmoB-T0n-T0s9J5ZbNoSX04XmEp0T0y0T0pfmfzgvvr4TecnruvPgDnhesRw</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Abdel Aziz, M S</creator><creator>Hassan, M A. Moustafa</creator><creator>El-Zahab, E A</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20120401</creationdate><title>An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks</title><author>Abdel Aziz, M S ; Hassan, M A. Moustafa ; El-Zahab, E A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-96b667b27017dbcdc455f5087e47f3e53784b201f99f03bacc0eeb9afda80ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive systems</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fault detection</topic><topic>Fault location</topic><topic>Faults</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>High impedance</topic><topic>Methods</topic><topic>Networks</topic><topic>Phase current</topic><topic>Simulation methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdel Aziz, M S</creatorcontrib><creatorcontrib>Hassan, M A. Moustafa</creatorcontrib><creatorcontrib>El-Zahab, E A</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of system dynamics applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel Aziz, M S</au><au>Hassan, M A. Moustafa</au><au>El-Zahab, E A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks</atitle><jtitle>International journal of system dynamics applications</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>1</volume><issue>2</issue><spage>44</spage><epage>59</epage><pages>44-59</pages><issn>2160-9772</issn><eissn>2160-9799</eissn><abstract>This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and tested for different system conditions. Details of the design process and the results of performance using the proposed method are discussed. The results show the proposed technique effectiveness in detecting, classifying, and locating high impedance faults. The 3rd harmonics, magnitude and angle, for the 3 phase currents give superior results for fault detection as well as for fault location in High Impedance faults. The fundamental components magnitude and angle for the 3 phase currents give superior results for classification phase of High Impedance faults over other types of data inputs.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/ijsda.2012040104</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-9772 |
ispartof | International journal of system dynamics applications, 2012-04, Vol.1 (2), p.44-59 |
issn | 2160-9772 2160-9799 |
language | eng |
recordid | cdi_gale_businessinsightsgauss_A760953658 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Adaptive systems Artificial intelligence Artificial neural networks Classification Dynamical systems Dynamics Fault detection Fault location Faults Fuzzy Fuzzy logic High impedance Methods Networks Phase current Simulation methods |
title | An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Artificial%20Intelligence%20Based%20Approach%20for%20High%20Impedance%20Faults%20Analysis%20in%20Distribution%20Networks&rft.jtitle=International%20journal%20of%20system%20dynamics%20applications&rft.au=Abdel%20Aziz,%20M%20S&rft.date=2012-04-01&rft.volume=1&rft.issue=2&rft.spage=44&rft.epage=59&rft.pages=44-59&rft.issn=2160-9772&rft.eissn=2160-9799&rft_id=info:doi/10.4018/ijsda.2012040104&rft_dat=%3Cgale_cross%3EA760953658%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932402823&rft_id=info:pmid/&rft_galeid=A760953658&rfr_iscdi=true |