An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks

This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of system dynamics applications 2012-04, Vol.1 (2), p.44-59
Hauptverfasser: Abdel Aziz, M S, Hassan, M A. Moustafa, El-Zahab, E A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 2
container_start_page 44
container_title International journal of system dynamics applications
container_volume 1
creator Abdel Aziz, M S
Hassan, M A. Moustafa
El-Zahab, E A
description This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and tested for different system conditions. Details of the design process and the results of performance using the proposed method are discussed. The results show the proposed technique effectiveness in detecting, classifying, and locating high impedance faults. The 3rd harmonics, magnitude and angle, for the 3 phase currents give superior results for fault detection as well as for fault location in High Impedance faults. The fundamental components magnitude and angle for the 3 phase currents give superior results for classification phase of High Impedance faults over other types of data inputs.
doi_str_mv 10.4018/ijsda.2012040104
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A760953658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760953658</galeid><sourcerecordid>A760953658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-96b667b27017dbcdc455f5087e47f3e53784b201f99f03bacc0eeb9afda80ca13</originalsourceid><addsrcrecordid>eNp1kc1v3CAQxVHUSI02ufeIlEsP3XQA25ijk3ablaLm0p4RxuCw9dougxXlvy_pVvmSihAD0m-e5vEI-cDgogBWfw477MwFB8Yhv6E4IiecVbBWUql3T3fJ35MzxB3kVUEpFDshrhlpE1PwwQYz0O2Y3DCE3o3W0UuDrqPNPMfJ2Dvqp0ivQ39Ht_vZdeaR2JhlSEib0QwPGJCGkX4JmGJolxSmkX536X6Kv_CUHHszoDv7V1fk5-brj6vr9c3tt-1Vc7O2opJpraq2qmTLJTDZtbazRVn6EmrpCumFK4Wsiza79Ep5EK2xFpxrlfGdqcEaJlbk40E3j_x7cZj0PqDNjszopgU1qyQrShB5r8j5G3Q3LTEbQc2V4AXwmotMfTpQvRmcbhcMo8N8YP6HhL1ZEHUjK1ClqMo643DAbZwQo_N6jmFv4oNmoB-T0n-T0s9J5ZbNoSX04XmEp0T0y0T0pfmfzgvvr4TecnruvPgDnhesRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932402823</pqid></control><display><type>article</type><title>An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Abdel Aziz, M S ; Hassan, M A. Moustafa ; El-Zahab, E A</creator><creatorcontrib>Abdel Aziz, M S ; Hassan, M A. Moustafa ; El-Zahab, E A</creatorcontrib><description>This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and tested for different system conditions. Details of the design process and the results of performance using the proposed method are discussed. The results show the proposed technique effectiveness in detecting, classifying, and locating high impedance faults. The 3rd harmonics, magnitude and angle, for the 3 phase currents give superior results for fault detection as well as for fault location in High Impedance faults. The fundamental components magnitude and angle for the 3 phase currents give superior results for classification phase of High Impedance faults over other types of data inputs.</description><identifier>ISSN: 2160-9772</identifier><identifier>EISSN: 2160-9799</identifier><identifier>DOI: 10.4018/ijsda.2012040104</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Adaptive systems ; Artificial intelligence ; Artificial neural networks ; Classification ; Dynamical systems ; Dynamics ; Fault detection ; Fault location ; Faults ; Fuzzy ; Fuzzy logic ; High impedance ; Methods ; Networks ; Phase current ; Simulation methods</subject><ispartof>International journal of system dynamics applications, 2012-04, Vol.1 (2), p.44-59</ispartof><rights>COPYRIGHT 2012 IGI Global</rights><rights>Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-96b667b27017dbcdc455f5087e47f3e53784b201f99f03bacc0eeb9afda80ca13</citedby><cites>FETCH-LOGICAL-c367t-96b667b27017dbcdc455f5087e47f3e53784b201f99f03bacc0eeb9afda80ca13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2932402823?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33531,33703,33704,33744,33745,34005,34006,34314,34315,43659,43787,43805,43953,44067,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Abdel Aziz, M S</creatorcontrib><creatorcontrib>Hassan, M A. Moustafa</creatorcontrib><creatorcontrib>El-Zahab, E A</creatorcontrib><title>An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks</title><title>International journal of system dynamics applications</title><description>This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and tested for different system conditions. Details of the design process and the results of performance using the proposed method are discussed. The results show the proposed technique effectiveness in detecting, classifying, and locating high impedance faults. The 3rd harmonics, magnitude and angle, for the 3 phase currents give superior results for fault detection as well as for fault location in High Impedance faults. The fundamental components magnitude and angle for the 3 phase currents give superior results for classification phase of High Impedance faults over other types of data inputs.</description><subject>Adaptive systems</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fault detection</subject><subject>Fault location</subject><subject>Faults</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>High impedance</subject><subject>Methods</subject><subject>Networks</subject><subject>Phase current</subject><subject>Simulation methods</subject><issn>2160-9772</issn><issn>2160-9799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1v3CAQxVHUSI02ufeIlEsP3XQA25ijk3ablaLm0p4RxuCw9dougxXlvy_pVvmSihAD0m-e5vEI-cDgogBWfw477MwFB8Yhv6E4IiecVbBWUql3T3fJ35MzxB3kVUEpFDshrhlpE1PwwQYz0O2Y3DCE3o3W0UuDrqPNPMfJ2Dvqp0ivQ39Ht_vZdeaR2JhlSEib0QwPGJCGkX4JmGJolxSmkX536X6Kv_CUHHszoDv7V1fk5-brj6vr9c3tt-1Vc7O2opJpraq2qmTLJTDZtbazRVn6EmrpCumFK4Wsiza79Ep5EK2xFpxrlfGdqcEaJlbk40E3j_x7cZj0PqDNjszopgU1qyQrShB5r8j5G3Q3LTEbQc2V4AXwmotMfTpQvRmcbhcMo8N8YP6HhL1ZEHUjK1ClqMo643DAbZwQo_N6jmFv4oNmoB-T0n-T0s9J5ZbNoSX04XmEp0T0y0T0pfmfzgvvr4TecnruvPgDnhesRw</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Abdel Aziz, M S</creator><creator>Hassan, M A. Moustafa</creator><creator>El-Zahab, E A</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20120401</creationdate><title>An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks</title><author>Abdel Aziz, M S ; Hassan, M A. Moustafa ; El-Zahab, E A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-96b667b27017dbcdc455f5087e47f3e53784b201f99f03bacc0eeb9afda80ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive systems</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fault detection</topic><topic>Fault location</topic><topic>Faults</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>High impedance</topic><topic>Methods</topic><topic>Networks</topic><topic>Phase current</topic><topic>Simulation methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdel Aziz, M S</creatorcontrib><creatorcontrib>Hassan, M A. Moustafa</creatorcontrib><creatorcontrib>El-Zahab, E A</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of system dynamics applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel Aziz, M S</au><au>Hassan, M A. Moustafa</au><au>El-Zahab, E A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks</atitle><jtitle>International journal of system dynamics applications</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>1</volume><issue>2</issue><spage>44</spage><epage>59</epage><pages>44-59</pages><issn>2160-9772</issn><eissn>2160-9799</eissn><abstract>This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and tested for different system conditions. Details of the design process and the results of performance using the proposed method are discussed. The results show the proposed technique effectiveness in detecting, classifying, and locating high impedance faults. The 3rd harmonics, magnitude and angle, for the 3 phase currents give superior results for fault detection as well as for fault location in High Impedance faults. The fundamental components magnitude and angle for the 3 phase currents give superior results for classification phase of High Impedance faults over other types of data inputs.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/ijsda.2012040104</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2160-9772
ispartof International journal of system dynamics applications, 2012-04, Vol.1 (2), p.44-59
issn 2160-9772
2160-9799
language eng
recordid cdi_gale_businessinsightsgauss_A760953658
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Adaptive systems
Artificial intelligence
Artificial neural networks
Classification
Dynamical systems
Dynamics
Fault detection
Fault location
Faults
Fuzzy
Fuzzy logic
High impedance
Methods
Networks
Phase current
Simulation methods
title An Artificial Intelligence Based Approach for High Impedance Faults Analysis in Distribution Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Artificial%20Intelligence%20Based%20Approach%20for%20High%20Impedance%20Faults%20Analysis%20in%20Distribution%20Networks&rft.jtitle=International%20journal%20of%20system%20dynamics%20applications&rft.au=Abdel%20Aziz,%20M%20S&rft.date=2012-04-01&rft.volume=1&rft.issue=2&rft.spage=44&rft.epage=59&rft.pages=44-59&rft.issn=2160-9772&rft.eissn=2160-9799&rft_id=info:doi/10.4018/ijsda.2012040104&rft_dat=%3Cgale_cross%3EA760953658%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932402823&rft_id=info:pmid/&rft_galeid=A760953658&rfr_iscdi=true