An Improved Nondominated Sorting Algorithm

This paper presents a new procedure for the nondominated sorting with constraint handling to be used in a multiobjective evolutionary algorithm. The strategy uses a sorting algorithm and binary search to classify the solutions in the correct level of the Pareto front. In a problem with objective fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of natural computing research 2012-10, Vol.3 (4), p.20-42
1. Verfasser: da Cruz, André R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 4
container_start_page 20
container_title International journal of natural computing research
container_volume 3
creator da Cruz, André R
description This paper presents a new procedure for the nondominated sorting with constraint handling to be used in a multiobjective evolutionary algorithm. The strategy uses a sorting algorithm and binary search to classify the solutions in the correct level of the Pareto front. In a problem with objective functions, using solutions in the population, the original nondominated sorting algorithm, used by NSGA-II, has always a computational cost of in a naïve implementation. The complexity of the new algorithm can vary from in the best case and in the worst case. A experiment was executed in order to compare the new algorithm with the original and another improved version of the Deb’s algorithm. Results reveal that the new strategy is much better than other versions when there are many levels in Pareto front. It is also concluded that is interesting to alternate the new algorithm and the improved Deb’s version during the evolution of the evolutionary algorithm.
doi_str_mv 10.4018/jncr.2012100102
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A760943734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760943734</galeid><sourcerecordid>A760943734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2328-4b6a6587c32953e451f28eae8d9fc9b4a192dae18d0701fb70a55d207780993e3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4soOObOXgceFLFbfrVJjmVMHQw9qOAtpG3aZbTNTFrB_96UDidDc3jJg897-fIJgksIZgRANt82mZ0hABEEAAJ0EowgJzTkiLPTnzd7Pw8mzm2BPxGhNIpGwW3STFf1zppPlU-fTJObWjey9c2Lsa1uymlSlcbqdlNfBGeFrJya7O9x8Ha_fF08huvnh9UiWYcZwoiFJI1lHDGaYcQjrEgEC8SUVCznRcZTIiFHuVSQ5YACWKQUyCjKEaCUAc6xwuPgZtjrU310yrWi1i5TVSUbZTonYEwhIZwx5tGrI3RrOtv4dAJxTBEHDPXU3UCVslIi7ZxulPPF6XLTulJ2zomExoATTDHx-HzAM2ucs6oQO6trab8EBKK3LXrb4mDbT1wPE7rUhwRHlNjlhSeXf5B7_-K3f9H7_-9D_A1KxJS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937290828</pqid></control><display><type>article</type><title>An Improved Nondominated Sorting Algorithm</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>da Cruz, André R</creator><creatorcontrib>da Cruz, André R</creatorcontrib><description>This paper presents a new procedure for the nondominated sorting with constraint handling to be used in a multiobjective evolutionary algorithm. The strategy uses a sorting algorithm and binary search to classify the solutions in the correct level of the Pareto front. In a problem with objective functions, using solutions in the population, the original nondominated sorting algorithm, used by NSGA-II, has always a computational cost of in a naïve implementation. The complexity of the new algorithm can vary from in the best case and in the worst case. A experiment was executed in order to compare the new algorithm with the original and another improved version of the Deb’s algorithm. Results reveal that the new strategy is much better than other versions when there are many levels in Pareto front. It is also concluded that is interesting to alternate the new algorithm and the improved Deb’s version during the evolution of the evolutionary algorithm.</description><identifier>ISSN: 1947-928X</identifier><identifier>EISSN: 1947-9298</identifier><identifier>DOI: 10.4018/jncr.2012100102</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Computational efficiency ; Evolution ; Evolutionary algorithms ; Genetic algorithms ; Mathematical models ; Pareto optimality ; Sorting algorithms ; Strategy</subject><ispartof>International journal of natural computing research, 2012-10, Vol.3 (4), p.20-42</ispartof><rights>COPYRIGHT 2012 IGI Global</rights><rights>Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2328-4b6a6587c32953e451f28eae8d9fc9b4a192dae18d0701fb70a55d207780993e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2937290828?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,33745,43805,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>da Cruz, André R</creatorcontrib><title>An Improved Nondominated Sorting Algorithm</title><title>International journal of natural computing research</title><description>This paper presents a new procedure for the nondominated sorting with constraint handling to be used in a multiobjective evolutionary algorithm. The strategy uses a sorting algorithm and binary search to classify the solutions in the correct level of the Pareto front. In a problem with objective functions, using solutions in the population, the original nondominated sorting algorithm, used by NSGA-II, has always a computational cost of in a naïve implementation. The complexity of the new algorithm can vary from in the best case and in the worst case. A experiment was executed in order to compare the new algorithm with the original and another improved version of the Deb’s algorithm. Results reveal that the new strategy is much better than other versions when there are many levels in Pareto front. It is also concluded that is interesting to alternate the new algorithm and the improved Deb’s version during the evolution of the evolutionary algorithm.</description><subject>Algorithms</subject><subject>Computational efficiency</subject><subject>Evolution</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Mathematical models</subject><subject>Pareto optimality</subject><subject>Sorting algorithms</subject><subject>Strategy</subject><issn>1947-928X</issn><issn>1947-9298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM9LwzAUx4soOObOXgceFLFbfrVJjmVMHQw9qOAtpG3aZbTNTFrB_96UDidDc3jJg897-fIJgksIZgRANt82mZ0hABEEAAJ0EowgJzTkiLPTnzd7Pw8mzm2BPxGhNIpGwW3STFf1zppPlU-fTJObWjey9c2Lsa1uymlSlcbqdlNfBGeFrJya7O9x8Ha_fF08huvnh9UiWYcZwoiFJI1lHDGaYcQjrEgEC8SUVCznRcZTIiFHuVSQ5YACWKQUyCjKEaCUAc6xwuPgZtjrU310yrWi1i5TVSUbZTonYEwhIZwx5tGrI3RrOtv4dAJxTBEHDPXU3UCVslIi7ZxulPPF6XLTulJ2zomExoATTDHx-HzAM2ucs6oQO6trab8EBKK3LXrb4mDbT1wPE7rUhwRHlNjlhSeXf5B7_-K3f9H7_-9D_A1KxJS0</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>da Cruz, André R</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121001</creationdate><title>An Improved Nondominated Sorting Algorithm</title><author>da Cruz, André R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2328-4b6a6587c32953e451f28eae8d9fc9b4a192dae18d0701fb70a55d207780993e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Computational efficiency</topic><topic>Evolution</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Mathematical models</topic><topic>Pareto optimality</topic><topic>Sorting algorithms</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Cruz, André R</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of natural computing research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Cruz, André R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Nondominated Sorting Algorithm</atitle><jtitle>International journal of natural computing research</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>3</volume><issue>4</issue><spage>20</spage><epage>42</epage><pages>20-42</pages><issn>1947-928X</issn><eissn>1947-9298</eissn><abstract>This paper presents a new procedure for the nondominated sorting with constraint handling to be used in a multiobjective evolutionary algorithm. The strategy uses a sorting algorithm and binary search to classify the solutions in the correct level of the Pareto front. In a problem with objective functions, using solutions in the population, the original nondominated sorting algorithm, used by NSGA-II, has always a computational cost of in a naïve implementation. The complexity of the new algorithm can vary from in the best case and in the worst case. A experiment was executed in order to compare the new algorithm with the original and another improved version of the Deb’s algorithm. Results reveal that the new strategy is much better than other versions when there are many levels in Pareto front. It is also concluded that is interesting to alternate the new algorithm and the improved Deb’s version during the evolution of the evolutionary algorithm.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/jncr.2012100102</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1947-928X
ispartof International journal of natural computing research, 2012-10, Vol.3 (4), p.20-42
issn 1947-928X
1947-9298
language eng
recordid cdi_gale_businessinsightsgauss_A760943734
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Computational efficiency
Evolution
Evolutionary algorithms
Genetic algorithms
Mathematical models
Pareto optimality
Sorting algorithms
Strategy
title An Improved Nondominated Sorting Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Nondominated%20Sorting%20Algorithm&rft.jtitle=International%20journal%20of%20natural%20computing%20research&rft.au=da%20Cruz,%20Andr%C3%A9%20R&rft.date=2012-10-01&rft.volume=3&rft.issue=4&rft.spage=20&rft.epage=42&rft.pages=20-42&rft.issn=1947-928X&rft.eissn=1947-9298&rft_id=info:doi/10.4018/jncr.2012100102&rft_dat=%3Cgale_proqu%3EA760943734%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937290828&rft_id=info:pmid/&rft_galeid=A760943734&rfr_iscdi=true