Obesity Epidemic Simulation Based on Behavioral Models and Intelligent Agents
This research work is aimed at proposing a simulation model based on Intelligent Agents devoted to reproduce human behavior influence over the evolution and impact of obesity epidemics. Indeed, obesity is a real big problem for both USA and European countries, so it is necessary to take under contro...
Gespeichert in:
Veröffentlicht in: | International journal of privacy and health information management 2013-07, Vol.1 (2), p.96-114 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 2 |
container_start_page | 96 |
container_title | International journal of privacy and health information management |
container_volume | 1 |
creator | Massei, Marina Tremori, Alberto Novak, Vera Poggi, Simonluca Bartolucci, Christian Ferrando, Angelo Chiurco, Alessandro |
description | This research work is aimed at proposing a simulation model based on Intelligent Agents devoted to reproduce human behavior influence over the evolution and impact of obesity epidemics. Indeed, obesity is a real big problem for both USA and European countries, so it is necessary to take under control this phenomenon and, above all, to support Agencies and Nations with simulation models in order to promote specific actions, to guarantee population healthy and to reduce the related social costs. To this end, taking advantage of previous experiences on Human Behavior Models, a Library including Intelligent Agents for Computer Generated Forces (IA-CGF Libraries) has been developed. This library is conceived to reproduce complex scenarios with particular attention to non-conventional frameworks on the progression of obesity epidemics in the world where human behaviors play a crucial role. As for the simulation models test, calibration and validation, two scenarios with different underlying social and cultural conditions have been considered and compared, namely: Italy (obesity prevalence ~10%) and U.S.A. (obesity prevalence ~35%). This way, it has been possible to gain fruitful insights about how simulation models evolve over different social and cultural conditions in different countries. |
doi_str_mv | 10.4018/ijphim.2013070107 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A760820784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760820784</galeid><sourcerecordid>A760820784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2051-e40bbccb90fd98e386dabe1c860338250ea235d0f364d615f24c7074fabd0b9e3</originalsourceid><addsrcrecordid>eNp1kEtLw0AQgIMoWGp_gLcFT4Kps9kkuz22pdZCSw8qeFs2-0i35EU2EfrvTYlaRZ3DzBy-mWE-z7vGMA4Bs3u7r3Y2HweACVDAQM-8QYCjyI9i8nr-1Qf40hs5t4cuKGU0wgNvs020s80BLSqrdG4lerJ5m4nGlgWaCacVOjZ6J95sWYsMbUqlM4dEodCqaHSW2VQXDZoes7vyLozInB591KH38rB4nj_66-1yNZ-ufRlAhH0dQpJImUzAqAnThMVKJBpLFgMhLIhAi4BECgyJQxXjyAShpEBDIxIFyUSToXfT701FprktTNnUQubWST6lMbAAKAs76u4blbTOFtp1ydl017hUtM79xHGPy7p0rtaGV7XNRX3gGPjRM-8985Pnbua2n7Gp5fuyrYvu7d8cr5Tp2OVfbHPgn-75yT2f_XsUk3d0Rpc7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Obesity Epidemic Simulation Based on Behavioral Models and Intelligent Agents</title><source>Alma/SFX Local Collection</source><creator>Massei, Marina ; Tremori, Alberto ; Novak, Vera ; Poggi, Simonluca ; Bartolucci, Christian ; Ferrando, Angelo ; Chiurco, Alessandro</creator><creatorcontrib>Massei, Marina ; Tremori, Alberto ; Novak, Vera ; Poggi, Simonluca ; Bartolucci, Christian ; Ferrando, Angelo ; Chiurco, Alessandro</creatorcontrib><description>This research work is aimed at proposing a simulation model based on Intelligent Agents devoted to reproduce human behavior influence over the evolution and impact of obesity epidemics. Indeed, obesity is a real big problem for both USA and European countries, so it is necessary to take under control this phenomenon and, above all, to support Agencies and Nations with simulation models in order to promote specific actions, to guarantee population healthy and to reduce the related social costs. To this end, taking advantage of previous experiences on Human Behavior Models, a Library including Intelligent Agents for Computer Generated Forces (IA-CGF Libraries) has been developed. This library is conceived to reproduce complex scenarios with particular attention to non-conventional frameworks on the progression of obesity epidemics in the world where human behaviors play a crucial role. As for the simulation models test, calibration and validation, two scenarios with different underlying social and cultural conditions have been considered and compared, namely: Italy (obesity prevalence ~10%) and U.S.A. (obesity prevalence ~35%). This way, it has been possible to gain fruitful insights about how simulation models evolve over different social and cultural conditions in different countries.</description><identifier>ISSN: 2155-5621</identifier><identifier>EISSN: 2155-563X</identifier><identifier>DOI: 10.4018/ijphim.2013070107</identifier><language>eng</language><publisher>IGI Global</publisher><subject>Analysis ; Human acts ; Human behavior ; Obesity ; Simulation methods ; Social networks ; Type 2 diabetes</subject><ispartof>International journal of privacy and health information management, 2013-07, Vol.1 (2), p.96-114</ispartof><rights>COPYRIGHT 2013 IGI Global</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2051-e40bbccb90fd98e386dabe1c860338250ea235d0f364d615f24c7074fabd0b9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Massei, Marina</creatorcontrib><creatorcontrib>Tremori, Alberto</creatorcontrib><creatorcontrib>Novak, Vera</creatorcontrib><creatorcontrib>Poggi, Simonluca</creatorcontrib><creatorcontrib>Bartolucci, Christian</creatorcontrib><creatorcontrib>Ferrando, Angelo</creatorcontrib><creatorcontrib>Chiurco, Alessandro</creatorcontrib><title>Obesity Epidemic Simulation Based on Behavioral Models and Intelligent Agents</title><title>International journal of privacy and health information management</title><description>This research work is aimed at proposing a simulation model based on Intelligent Agents devoted to reproduce human behavior influence over the evolution and impact of obesity epidemics. Indeed, obesity is a real big problem for both USA and European countries, so it is necessary to take under control this phenomenon and, above all, to support Agencies and Nations with simulation models in order to promote specific actions, to guarantee population healthy and to reduce the related social costs. To this end, taking advantage of previous experiences on Human Behavior Models, a Library including Intelligent Agents for Computer Generated Forces (IA-CGF Libraries) has been developed. This library is conceived to reproduce complex scenarios with particular attention to non-conventional frameworks on the progression of obesity epidemics in the world where human behaviors play a crucial role. As for the simulation models test, calibration and validation, two scenarios with different underlying social and cultural conditions have been considered and compared, namely: Italy (obesity prevalence ~10%) and U.S.A. (obesity prevalence ~35%). This way, it has been possible to gain fruitful insights about how simulation models evolve over different social and cultural conditions in different countries.</description><subject>Analysis</subject><subject>Human acts</subject><subject>Human behavior</subject><subject>Obesity</subject><subject>Simulation methods</subject><subject>Social networks</subject><subject>Type 2 diabetes</subject><issn>2155-5621</issn><issn>2155-563X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kEtLw0AQgIMoWGp_gLcFT4Kps9kkuz22pdZCSw8qeFs2-0i35EU2EfrvTYlaRZ3DzBy-mWE-z7vGMA4Bs3u7r3Y2HweACVDAQM-8QYCjyI9i8nr-1Qf40hs5t4cuKGU0wgNvs020s80BLSqrdG4lerJ5m4nGlgWaCacVOjZ6J95sWYsMbUqlM4dEodCqaHSW2VQXDZoes7vyLozInB591KH38rB4nj_66-1yNZ-ufRlAhH0dQpJImUzAqAnThMVKJBpLFgMhLIhAi4BECgyJQxXjyAShpEBDIxIFyUSToXfT701FprktTNnUQubWST6lMbAAKAs76u4blbTOFtp1ydl017hUtM79xHGPy7p0rtaGV7XNRX3gGPjRM-8985Pnbua2n7Gp5fuyrYvu7d8cr5Tp2OVfbHPgn-75yT2f_XsUk3d0Rpc7</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Massei, Marina</creator><creator>Tremori, Alberto</creator><creator>Novak, Vera</creator><creator>Poggi, Simonluca</creator><creator>Bartolucci, Christian</creator><creator>Ferrando, Angelo</creator><creator>Chiurco, Alessandro</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope></search><sort><creationdate>20130701</creationdate><title>Obesity Epidemic Simulation Based on Behavioral Models and Intelligent Agents</title><author>Massei, Marina ; Tremori, Alberto ; Novak, Vera ; Poggi, Simonluca ; Bartolucci, Christian ; Ferrando, Angelo ; Chiurco, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2051-e40bbccb90fd98e386dabe1c860338250ea235d0f364d615f24c7074fabd0b9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Human acts</topic><topic>Human behavior</topic><topic>Obesity</topic><topic>Simulation methods</topic><topic>Social networks</topic><topic>Type 2 diabetes</topic><toplevel>online_resources</toplevel><creatorcontrib>Massei, Marina</creatorcontrib><creatorcontrib>Tremori, Alberto</creatorcontrib><creatorcontrib>Novak, Vera</creatorcontrib><creatorcontrib>Poggi, Simonluca</creatorcontrib><creatorcontrib>Bartolucci, Christian</creatorcontrib><creatorcontrib>Ferrando, Angelo</creatorcontrib><creatorcontrib>Chiurco, Alessandro</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><jtitle>International journal of privacy and health information management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massei, Marina</au><au>Tremori, Alberto</au><au>Novak, Vera</au><au>Poggi, Simonluca</au><au>Bartolucci, Christian</au><au>Ferrando, Angelo</au><au>Chiurco, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obesity Epidemic Simulation Based on Behavioral Models and Intelligent Agents</atitle><jtitle>International journal of privacy and health information management</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>1</volume><issue>2</issue><spage>96</spage><epage>114</epage><pages>96-114</pages><issn>2155-5621</issn><eissn>2155-563X</eissn><abstract>This research work is aimed at proposing a simulation model based on Intelligent Agents devoted to reproduce human behavior influence over the evolution and impact of obesity epidemics. Indeed, obesity is a real big problem for both USA and European countries, so it is necessary to take under control this phenomenon and, above all, to support Agencies and Nations with simulation models in order to promote specific actions, to guarantee population healthy and to reduce the related social costs. To this end, taking advantage of previous experiences on Human Behavior Models, a Library including Intelligent Agents for Computer Generated Forces (IA-CGF Libraries) has been developed. This library is conceived to reproduce complex scenarios with particular attention to non-conventional frameworks on the progression of obesity epidemics in the world where human behaviors play a crucial role. As for the simulation models test, calibration and validation, two scenarios with different underlying social and cultural conditions have been considered and compared, namely: Italy (obesity prevalence ~10%) and U.S.A. (obesity prevalence ~35%). This way, it has been possible to gain fruitful insights about how simulation models evolve over different social and cultural conditions in different countries.</abstract><pub>IGI Global</pub><doi>10.4018/ijphim.2013070107</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2155-5621 |
ispartof | International journal of privacy and health information management, 2013-07, Vol.1 (2), p.96-114 |
issn | 2155-5621 2155-563X |
language | eng |
recordid | cdi_gale_businessinsightsgauss_A760820784 |
source | Alma/SFX Local Collection |
subjects | Analysis Human acts Human behavior Obesity Simulation methods Social networks Type 2 diabetes |
title | Obesity Epidemic Simulation Based on Behavioral Models and Intelligent Agents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obesity%20Epidemic%20Simulation%20Based%20on%20Behavioral%20Models%20and%20Intelligent%20Agents&rft.jtitle=International%20journal%20of%20privacy%20and%20health%20information%20management&rft.au=Massei,%20Marina&rft.date=2013-07-01&rft.volume=1&rft.issue=2&rft.spage=96&rft.epage=114&rft.pages=96-114&rft.issn=2155-5621&rft.eissn=2155-563X&rft_id=info:doi/10.4018/ijphim.2013070107&rft_dat=%3Cgale_cross%3EA760820784%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A760820784&rfr_iscdi=true |