Obesity Epidemic Simulation Based on Behavioral Models and Intelligent Agents

This research work is aimed at proposing a simulation model based on Intelligent Agents devoted to reproduce human behavior influence over the evolution and impact of obesity epidemics. Indeed, obesity is a real big problem for both USA and European countries, so it is necessary to take under contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of privacy and health information management 2013-07, Vol.1 (2), p.96-114
Hauptverfasser: Massei, Marina, Tremori, Alberto, Novak, Vera, Poggi, Simonluca, Bartolucci, Christian, Ferrando, Angelo, Chiurco, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 2
container_start_page 96
container_title International journal of privacy and health information management
container_volume 1
creator Massei, Marina
Tremori, Alberto
Novak, Vera
Poggi, Simonluca
Bartolucci, Christian
Ferrando, Angelo
Chiurco, Alessandro
description This research work is aimed at proposing a simulation model based on Intelligent Agents devoted to reproduce human behavior influence over the evolution and impact of obesity epidemics. Indeed, obesity is a real big problem for both USA and European countries, so it is necessary to take under control this phenomenon and, above all, to support Agencies and Nations with simulation models in order to promote specific actions, to guarantee population healthy and to reduce the related social costs. To this end, taking advantage of previous experiences on Human Behavior Models, a Library including Intelligent Agents for Computer Generated Forces (IA-CGF Libraries) has been developed. This library is conceived to reproduce complex scenarios with particular attention to non-conventional frameworks on the progression of obesity epidemics in the world where human behaviors play a crucial role. As for the simulation models test, calibration and validation, two scenarios with different underlying social and cultural conditions have been considered and compared, namely: Italy (obesity prevalence ~10%) and U.S.A. (obesity prevalence ~35%). This way, it has been possible to gain fruitful insights about how simulation models evolve over different social and cultural conditions in different countries.
doi_str_mv 10.4018/ijphim.2013070107
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A760820784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760820784</galeid><sourcerecordid>A760820784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2051-e40bbccb90fd98e386dabe1c860338250ea235d0f364d615f24c7074fabd0b9e3</originalsourceid><addsrcrecordid>eNp1kEtLw0AQgIMoWGp_gLcFT4Kps9kkuz22pdZCSw8qeFs2-0i35EU2EfrvTYlaRZ3DzBy-mWE-z7vGMA4Bs3u7r3Y2HweACVDAQM-8QYCjyI9i8nr-1Qf40hs5t4cuKGU0wgNvs020s80BLSqrdG4lerJ5m4nGlgWaCacVOjZ6J95sWYsMbUqlM4dEodCqaHSW2VQXDZoes7vyLozInB591KH38rB4nj_66-1yNZ-ufRlAhH0dQpJImUzAqAnThMVKJBpLFgMhLIhAi4BECgyJQxXjyAShpEBDIxIFyUSToXfT701FprktTNnUQubWST6lMbAAKAs76u4blbTOFtp1ydl017hUtM79xHGPy7p0rtaGV7XNRX3gGPjRM-8985Pnbua2n7Gp5fuyrYvu7d8cr5Tp2OVfbHPgn-75yT2f_XsUk3d0Rpc7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Obesity Epidemic Simulation Based on Behavioral Models and Intelligent Agents</title><source>Alma/SFX Local Collection</source><creator>Massei, Marina ; Tremori, Alberto ; Novak, Vera ; Poggi, Simonluca ; Bartolucci, Christian ; Ferrando, Angelo ; Chiurco, Alessandro</creator><creatorcontrib>Massei, Marina ; Tremori, Alberto ; Novak, Vera ; Poggi, Simonluca ; Bartolucci, Christian ; Ferrando, Angelo ; Chiurco, Alessandro</creatorcontrib><description>This research work is aimed at proposing a simulation model based on Intelligent Agents devoted to reproduce human behavior influence over the evolution and impact of obesity epidemics. Indeed, obesity is a real big problem for both USA and European countries, so it is necessary to take under control this phenomenon and, above all, to support Agencies and Nations with simulation models in order to promote specific actions, to guarantee population healthy and to reduce the related social costs. To this end, taking advantage of previous experiences on Human Behavior Models, a Library including Intelligent Agents for Computer Generated Forces (IA-CGF Libraries) has been developed. This library is conceived to reproduce complex scenarios with particular attention to non-conventional frameworks on the progression of obesity epidemics in the world where human behaviors play a crucial role. As for the simulation models test, calibration and validation, two scenarios with different underlying social and cultural conditions have been considered and compared, namely: Italy (obesity prevalence ~10%) and U.S.A. (obesity prevalence ~35%). This way, it has been possible to gain fruitful insights about how simulation models evolve over different social and cultural conditions in different countries.</description><identifier>ISSN: 2155-5621</identifier><identifier>EISSN: 2155-563X</identifier><identifier>DOI: 10.4018/ijphim.2013070107</identifier><language>eng</language><publisher>IGI Global</publisher><subject>Analysis ; Human acts ; Human behavior ; Obesity ; Simulation methods ; Social networks ; Type 2 diabetes</subject><ispartof>International journal of privacy and health information management, 2013-07, Vol.1 (2), p.96-114</ispartof><rights>COPYRIGHT 2013 IGI Global</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2051-e40bbccb90fd98e386dabe1c860338250ea235d0f364d615f24c7074fabd0b9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Massei, Marina</creatorcontrib><creatorcontrib>Tremori, Alberto</creatorcontrib><creatorcontrib>Novak, Vera</creatorcontrib><creatorcontrib>Poggi, Simonluca</creatorcontrib><creatorcontrib>Bartolucci, Christian</creatorcontrib><creatorcontrib>Ferrando, Angelo</creatorcontrib><creatorcontrib>Chiurco, Alessandro</creatorcontrib><title>Obesity Epidemic Simulation Based on Behavioral Models and Intelligent Agents</title><title>International journal of privacy and health information management</title><description>This research work is aimed at proposing a simulation model based on Intelligent Agents devoted to reproduce human behavior influence over the evolution and impact of obesity epidemics. Indeed, obesity is a real big problem for both USA and European countries, so it is necessary to take under control this phenomenon and, above all, to support Agencies and Nations with simulation models in order to promote specific actions, to guarantee population healthy and to reduce the related social costs. To this end, taking advantage of previous experiences on Human Behavior Models, a Library including Intelligent Agents for Computer Generated Forces (IA-CGF Libraries) has been developed. This library is conceived to reproduce complex scenarios with particular attention to non-conventional frameworks on the progression of obesity epidemics in the world where human behaviors play a crucial role. As for the simulation models test, calibration and validation, two scenarios with different underlying social and cultural conditions have been considered and compared, namely: Italy (obesity prevalence ~10%) and U.S.A. (obesity prevalence ~35%). This way, it has been possible to gain fruitful insights about how simulation models evolve over different social and cultural conditions in different countries.</description><subject>Analysis</subject><subject>Human acts</subject><subject>Human behavior</subject><subject>Obesity</subject><subject>Simulation methods</subject><subject>Social networks</subject><subject>Type 2 diabetes</subject><issn>2155-5621</issn><issn>2155-563X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kEtLw0AQgIMoWGp_gLcFT4Kps9kkuz22pdZCSw8qeFs2-0i35EU2EfrvTYlaRZ3DzBy-mWE-z7vGMA4Bs3u7r3Y2HweACVDAQM-8QYCjyI9i8nr-1Qf40hs5t4cuKGU0wgNvs020s80BLSqrdG4lerJ5m4nGlgWaCacVOjZ6J95sWYsMbUqlM4dEodCqaHSW2VQXDZoes7vyLozInB591KH38rB4nj_66-1yNZ-ufRlAhH0dQpJImUzAqAnThMVKJBpLFgMhLIhAi4BECgyJQxXjyAShpEBDIxIFyUSToXfT701FprktTNnUQubWST6lMbAAKAs76u4blbTOFtp1ydl017hUtM79xHGPy7p0rtaGV7XNRX3gGPjRM-8985Pnbua2n7Gp5fuyrYvu7d8cr5Tp2OVfbHPgn-75yT2f_XsUk3d0Rpc7</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Massei, Marina</creator><creator>Tremori, Alberto</creator><creator>Novak, Vera</creator><creator>Poggi, Simonluca</creator><creator>Bartolucci, Christian</creator><creator>Ferrando, Angelo</creator><creator>Chiurco, Alessandro</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope></search><sort><creationdate>20130701</creationdate><title>Obesity Epidemic Simulation Based on Behavioral Models and Intelligent Agents</title><author>Massei, Marina ; Tremori, Alberto ; Novak, Vera ; Poggi, Simonluca ; Bartolucci, Christian ; Ferrando, Angelo ; Chiurco, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2051-e40bbccb90fd98e386dabe1c860338250ea235d0f364d615f24c7074fabd0b9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Human acts</topic><topic>Human behavior</topic><topic>Obesity</topic><topic>Simulation methods</topic><topic>Social networks</topic><topic>Type 2 diabetes</topic><toplevel>online_resources</toplevel><creatorcontrib>Massei, Marina</creatorcontrib><creatorcontrib>Tremori, Alberto</creatorcontrib><creatorcontrib>Novak, Vera</creatorcontrib><creatorcontrib>Poggi, Simonluca</creatorcontrib><creatorcontrib>Bartolucci, Christian</creatorcontrib><creatorcontrib>Ferrando, Angelo</creatorcontrib><creatorcontrib>Chiurco, Alessandro</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><jtitle>International journal of privacy and health information management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massei, Marina</au><au>Tremori, Alberto</au><au>Novak, Vera</au><au>Poggi, Simonluca</au><au>Bartolucci, Christian</au><au>Ferrando, Angelo</au><au>Chiurco, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obesity Epidemic Simulation Based on Behavioral Models and Intelligent Agents</atitle><jtitle>International journal of privacy and health information management</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>1</volume><issue>2</issue><spage>96</spage><epage>114</epage><pages>96-114</pages><issn>2155-5621</issn><eissn>2155-563X</eissn><abstract>This research work is aimed at proposing a simulation model based on Intelligent Agents devoted to reproduce human behavior influence over the evolution and impact of obesity epidemics. Indeed, obesity is a real big problem for both USA and European countries, so it is necessary to take under control this phenomenon and, above all, to support Agencies and Nations with simulation models in order to promote specific actions, to guarantee population healthy and to reduce the related social costs. To this end, taking advantage of previous experiences on Human Behavior Models, a Library including Intelligent Agents for Computer Generated Forces (IA-CGF Libraries) has been developed. This library is conceived to reproduce complex scenarios with particular attention to non-conventional frameworks on the progression of obesity epidemics in the world where human behaviors play a crucial role. As for the simulation models test, calibration and validation, two scenarios with different underlying social and cultural conditions have been considered and compared, namely: Italy (obesity prevalence ~10%) and U.S.A. (obesity prevalence ~35%). This way, it has been possible to gain fruitful insights about how simulation models evolve over different social and cultural conditions in different countries.</abstract><pub>IGI Global</pub><doi>10.4018/ijphim.2013070107</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2155-5621
ispartof International journal of privacy and health information management, 2013-07, Vol.1 (2), p.96-114
issn 2155-5621
2155-563X
language eng
recordid cdi_gale_businessinsightsgauss_A760820784
source Alma/SFX Local Collection
subjects Analysis
Human acts
Human behavior
Obesity
Simulation methods
Social networks
Type 2 diabetes
title Obesity Epidemic Simulation Based on Behavioral Models and Intelligent Agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obesity%20Epidemic%20Simulation%20Based%20on%20Behavioral%20Models%20and%20Intelligent%20Agents&rft.jtitle=International%20journal%20of%20privacy%20and%20health%20information%20management&rft.au=Massei,%20Marina&rft.date=2013-07-01&rft.volume=1&rft.issue=2&rft.spage=96&rft.epage=114&rft.pages=96-114&rft.issn=2155-5621&rft.eissn=2155-563X&rft_id=info:doi/10.4018/ijphim.2013070107&rft_dat=%3Cgale_cross%3EA760820784%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A760820784&rfr_iscdi=true