Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques

In today’s context (competition and knowledge economy), ML and KM on the supply chain level have received increased attention aiming to determine long and short-term success of many companies. However, demand forecasting with maximum accuracy is absolutely critical to invest in various fields, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information systems and supply chain management 2022-01, Vol.15 (1), p.1-21
Hauptverfasser: Brahami, Menaouer, Zahra, Abdeldjouad Fatma, Mohammed, Sabri, Semaoune, Khalissa, Matta, Nada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 1
container_title International journal of information systems and supply chain management
container_volume 15
creator Brahami, Menaouer
Zahra, Abdeldjouad Fatma
Mohammed, Sabri
Semaoune, Khalissa
Matta, Nada
description In today’s context (competition and knowledge economy), ML and KM on the supply chain level have received increased attention aiming to determine long and short-term success of many companies. However, demand forecasting with maximum accuracy is absolutely critical to invest in various fields, which places the knowledge extract process in high demand. In this paper, we propose a hybrid approach of prediction into a demand forecasting process in supply chain based on the one hand, on the processes analysis for best professional knowledge for required competencies. And on the other hand, the use of different data sources by supervised learning to improve the process of acquiring explicit knowledge, maximizing the efficiency of the demand forecasting, and comparing the obtained efficiency results. Therefore, the results reveal that the practices of KM should be considered as the most important factors affecting the demand forecasting process in supply chain. The classifier performance is examined by using a confusion matrix based on their Accuracy and Kappa value.
doi_str_mv 10.4018/IJISSCM.2022010103
format Article
fullrecord <record><control><sourceid>gale_econi</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A760500922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760500922</galeid><sourcerecordid>A760500922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-55e5670d2ec866799228c1f58f8efc8e30d6aad1e0c880248e23b52c9c598e0f3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEEqXwApx8RWLL2I4T57haKF3YCqRtz5brTBJXWSd4Nq369jhk1Z6QD7as75_x-MuyjxwucuD6y_bHdr_fXF8IEAJ4WvJVdsYrqVaqlPnr57Mo3mbviO4BVFVJOMvGyyGis3T0oWX7aRz7J7bprA_sKx5sqNl6HONgXcduaUZ-huGxx7pFdm2DbfGA4ch-x8EhERKbE6kKxgdPWLMd2hjm2A26Lvg_E9L77E1je8IPp_08u738drO5Wu1-fd9u1ruVy7k6rpRCVZRQC3S6KMqqEkI73ijdaGycRgl1YW3NEZzWIHKNQt4p4SqnKo3QyPPs01K3s70Zoz_Y-GQG683VemfmO8hzJQshHnhiPy9sa3s0d1OaNI3jA_m2O1JrJyKzLgtQAOkdCRcL7uJAFLF5rs_BzDrMSYd50ZFCbAmhG4Knl4hWUCrByyIh2wXxrTf3wxRD-iBzkmMWOeafHDPL-X8zruRfCV2hGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques</title><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Brahami, Menaouer ; Zahra, Abdeldjouad Fatma ; Mohammed, Sabri ; Semaoune, Khalissa ; Matta, Nada</creator><creatorcontrib>Brahami, Menaouer ; Zahra, Abdeldjouad Fatma ; Mohammed, Sabri ; Semaoune, Khalissa ; Matta, Nada</creatorcontrib><description>In today’s context (competition and knowledge economy), ML and KM on the supply chain level have received increased attention aiming to determine long and short-term success of many companies. However, demand forecasting with maximum accuracy is absolutely critical to invest in various fields, which places the knowledge extract process in high demand. In this paper, we propose a hybrid approach of prediction into a demand forecasting process in supply chain based on the one hand, on the processes analysis for best professional knowledge for required competencies. And on the other hand, the use of different data sources by supervised learning to improve the process of acquiring explicit knowledge, maximizing the efficiency of the demand forecasting, and comparing the obtained efficiency results. Therefore, the results reveal that the practices of KM should be considered as the most important factors affecting the demand forecasting process in supply chain. The classifier performance is examined by using a confusion matrix based on their Accuracy and Kappa value.</description><identifier>ISSN: 1935-5726</identifier><identifier>EISSN: 1935-5734</identifier><identifier>DOI: 10.4018/IJISSCM.2022010103</identifier><language>eng</language><publisher>IGI Global</publisher><subject>Computer Science ; Discount stores ; Industry forecasts ; Knowledge management ; Logistics ; Methods ; Operations Research</subject><ispartof>International journal of information systems and supply chain management, 2022-01, Vol.15 (1), p.1-21</ispartof><rights>COPYRIGHT 2022 IGI Global</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-55e5670d2ec866799228c1f58f8efc8e30d6aad1e0c880248e23b52c9c598e0f3</citedby><orcidid>0000-0002-5606-2193 ; 0000-0003-0045-9797 ; 0000-0001-8729-3624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://utt.hal.science/hal-04453622$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brahami, Menaouer</creatorcontrib><creatorcontrib>Zahra, Abdeldjouad Fatma</creatorcontrib><creatorcontrib>Mohammed, Sabri</creatorcontrib><creatorcontrib>Semaoune, Khalissa</creatorcontrib><creatorcontrib>Matta, Nada</creatorcontrib><title>Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques</title><title>International journal of information systems and supply chain management</title><description>In today’s context (competition and knowledge economy), ML and KM on the supply chain level have received increased attention aiming to determine long and short-term success of many companies. However, demand forecasting with maximum accuracy is absolutely critical to invest in various fields, which places the knowledge extract process in high demand. In this paper, we propose a hybrid approach of prediction into a demand forecasting process in supply chain based on the one hand, on the processes analysis for best professional knowledge for required competencies. And on the other hand, the use of different data sources by supervised learning to improve the process of acquiring explicit knowledge, maximizing the efficiency of the demand forecasting, and comparing the obtained efficiency results. Therefore, the results reveal that the practices of KM should be considered as the most important factors affecting the demand forecasting process in supply chain. The classifier performance is examined by using a confusion matrix based on their Accuracy and Kappa value.</description><subject>Computer Science</subject><subject>Discount stores</subject><subject>Industry forecasts</subject><subject>Knowledge management</subject><subject>Logistics</subject><subject>Methods</subject><subject>Operations Research</subject><issn>1935-5726</issn><issn>1935-5734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kcFu1DAQhiMEEqXwApx8RWLL2I4T57haKF3YCqRtz5brTBJXWSd4Nq369jhk1Z6QD7as75_x-MuyjxwucuD6y_bHdr_fXF8IEAJ4WvJVdsYrqVaqlPnr57Mo3mbviO4BVFVJOMvGyyGis3T0oWX7aRz7J7bprA_sKx5sqNl6HONgXcduaUZ-huGxx7pFdm2DbfGA4ch-x8EhERKbE6kKxgdPWLMd2hjm2A26Lvg_E9L77E1je8IPp_08u738drO5Wu1-fd9u1ruVy7k6rpRCVZRQC3S6KMqqEkI73ijdaGycRgl1YW3NEZzWIHKNQt4p4SqnKo3QyPPs01K3s70Zoz_Y-GQG683VemfmO8hzJQshHnhiPy9sa3s0d1OaNI3jA_m2O1JrJyKzLgtQAOkdCRcL7uJAFLF5rs_BzDrMSYd50ZFCbAmhG4Knl4hWUCrByyIh2wXxrTf3wxRD-iBzkmMWOeafHDPL-X8zruRfCV2hGw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Brahami, Menaouer</creator><creator>Zahra, Abdeldjouad Fatma</creator><creator>Mohammed, Sabri</creator><creator>Semaoune, Khalissa</creator><creator>Matta, Nada</creator><general>IGI Global</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5606-2193</orcidid><orcidid>https://orcid.org/0000-0003-0045-9797</orcidid><orcidid>https://orcid.org/0000-0001-8729-3624</orcidid></search><sort><creationdate>20220101</creationdate><title>Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques</title><author>Brahami, Menaouer ; Zahra, Abdeldjouad Fatma ; Mohammed, Sabri ; Semaoune, Khalissa ; Matta, Nada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-55e5670d2ec866799228c1f58f8efc8e30d6aad1e0c880248e23b52c9c598e0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>Discount stores</topic><topic>Industry forecasts</topic><topic>Knowledge management</topic><topic>Logistics</topic><topic>Methods</topic><topic>Operations Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahami, Menaouer</creatorcontrib><creatorcontrib>Zahra, Abdeldjouad Fatma</creatorcontrib><creatorcontrib>Mohammed, Sabri</creatorcontrib><creatorcontrib>Semaoune, Khalissa</creatorcontrib><creatorcontrib>Matta, Nada</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of information systems and supply chain management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brahami, Menaouer</au><au>Zahra, Abdeldjouad Fatma</au><au>Mohammed, Sabri</au><au>Semaoune, Khalissa</au><au>Matta, Nada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques</atitle><jtitle>International journal of information systems and supply chain management</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>15</volume><issue>1</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1935-5726</issn><eissn>1935-5734</eissn><abstract>In today’s context (competition and knowledge economy), ML and KM on the supply chain level have received increased attention aiming to determine long and short-term success of many companies. However, demand forecasting with maximum accuracy is absolutely critical to invest in various fields, which places the knowledge extract process in high demand. In this paper, we propose a hybrid approach of prediction into a demand forecasting process in supply chain based on the one hand, on the processes analysis for best professional knowledge for required competencies. And on the other hand, the use of different data sources by supervised learning to improve the process of acquiring explicit knowledge, maximizing the efficiency of the demand forecasting, and comparing the obtained efficiency results. Therefore, the results reveal that the practices of KM should be considered as the most important factors affecting the demand forecasting process in supply chain. The classifier performance is examined by using a confusion matrix based on their Accuracy and Kappa value.</abstract><pub>IGI Global</pub><doi>10.4018/IJISSCM.2022010103</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5606-2193</orcidid><orcidid>https://orcid.org/0000-0003-0045-9797</orcidid><orcidid>https://orcid.org/0000-0001-8729-3624</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-5726
ispartof International journal of information systems and supply chain management, 2022-01, Vol.15 (1), p.1-21
issn 1935-5726
1935-5734
language eng
recordid cdi_gale_businessinsightsgauss_A760500922
source Alma/SFX Local Collection; ProQuest Central
subjects Computer Science
Discount stores
Industry forecasts
Knowledge management
Logistics
Methods
Operations Research
title Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20Supply%20Chain%20Demand%20Approach%20Using%20Knowledge%20Management%20Processes%20and%20Supervised%20Learning%20Techniques&rft.jtitle=International%20journal%20of%20information%20systems%20and%20supply%20chain%20management&rft.au=Brahami,%20Menaouer&rft.date=2022-01-01&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1935-5726&rft.eissn=1935-5734&rft_id=info:doi/10.4018/IJISSCM.2022010103&rft_dat=%3Cgale_econi%3EA760500922%3C/gale_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A760500922&rfr_iscdi=true