Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques
In today’s context (competition and knowledge economy), ML and KM on the supply chain level have received increased attention aiming to determine long and short-term success of many companies. However, demand forecasting with maximum accuracy is absolutely critical to invest in various fields, which...
Gespeichert in:
Veröffentlicht in: | International journal of information systems and supply chain management 2022-01, Vol.15 (1), p.1-21 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | International journal of information systems and supply chain management |
container_volume | 15 |
creator | Brahami, Menaouer Zahra, Abdeldjouad Fatma Mohammed, Sabri Semaoune, Khalissa Matta, Nada |
description | In today’s context (competition and knowledge economy), ML and KM on the supply chain level have received increased attention aiming to determine long and short-term success of many companies. However, demand forecasting with maximum accuracy is absolutely critical to invest in various fields, which places the knowledge extract process in high demand. In this paper, we propose a hybrid approach of prediction into a demand forecasting process in supply chain based on the one hand, on the processes analysis for best professional knowledge for required competencies. And on the other hand, the use of different data sources by supervised learning to improve the process of acquiring explicit knowledge, maximizing the efficiency of the demand forecasting, and comparing the obtained efficiency results. Therefore, the results reveal that the practices of KM should be considered as the most important factors affecting the demand forecasting process in supply chain. The classifier performance is examined by using a confusion matrix based on their Accuracy and Kappa value. |
doi_str_mv | 10.4018/IJISSCM.2022010103 |
format | Article |
fullrecord | <record><control><sourceid>gale_econi</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A760500922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760500922</galeid><sourcerecordid>A760500922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-55e5670d2ec866799228c1f58f8efc8e30d6aad1e0c880248e23b52c9c598e0f3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEEqXwApx8RWLL2I4T57haKF3YCqRtz5brTBJXWSd4Nq369jhk1Z6QD7as75_x-MuyjxwucuD6y_bHdr_fXF8IEAJ4WvJVdsYrqVaqlPnr57Mo3mbviO4BVFVJOMvGyyGis3T0oWX7aRz7J7bprA_sKx5sqNl6HONgXcduaUZ-huGxx7pFdm2DbfGA4ch-x8EhERKbE6kKxgdPWLMd2hjm2A26Lvg_E9L77E1je8IPp_08u738drO5Wu1-fd9u1ruVy7k6rpRCVZRQC3S6KMqqEkI73ijdaGycRgl1YW3NEZzWIHKNQt4p4SqnKo3QyPPs01K3s70Zoz_Y-GQG683VemfmO8hzJQshHnhiPy9sa3s0d1OaNI3jA_m2O1JrJyKzLgtQAOkdCRcL7uJAFLF5rs_BzDrMSYd50ZFCbAmhG4Knl4hWUCrByyIh2wXxrTf3wxRD-iBzkmMWOeafHDPL-X8zruRfCV2hGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques</title><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Brahami, Menaouer ; Zahra, Abdeldjouad Fatma ; Mohammed, Sabri ; Semaoune, Khalissa ; Matta, Nada</creator><creatorcontrib>Brahami, Menaouer ; Zahra, Abdeldjouad Fatma ; Mohammed, Sabri ; Semaoune, Khalissa ; Matta, Nada</creatorcontrib><description>In today’s context (competition and knowledge economy), ML and KM on the supply chain level have received increased attention aiming to determine long and short-term success of many companies. However, demand forecasting with maximum accuracy is absolutely critical to invest in various fields, which places the knowledge extract process in high demand. In this paper, we propose a hybrid approach of prediction into a demand forecasting process in supply chain based on the one hand, on the processes analysis for best professional knowledge for required competencies. And on the other hand, the use of different data sources by supervised learning to improve the process of acquiring explicit knowledge, maximizing the efficiency of the demand forecasting, and comparing the obtained efficiency results. Therefore, the results reveal that the practices of KM should be considered as the most important factors affecting the demand forecasting process in supply chain. The classifier performance is examined by using a confusion matrix based on their Accuracy and Kappa value.</description><identifier>ISSN: 1935-5726</identifier><identifier>EISSN: 1935-5734</identifier><identifier>DOI: 10.4018/IJISSCM.2022010103</identifier><language>eng</language><publisher>IGI Global</publisher><subject>Computer Science ; Discount stores ; Industry forecasts ; Knowledge management ; Logistics ; Methods ; Operations Research</subject><ispartof>International journal of information systems and supply chain management, 2022-01, Vol.15 (1), p.1-21</ispartof><rights>COPYRIGHT 2022 IGI Global</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-55e5670d2ec866799228c1f58f8efc8e30d6aad1e0c880248e23b52c9c598e0f3</citedby><orcidid>0000-0002-5606-2193 ; 0000-0003-0045-9797 ; 0000-0001-8729-3624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://utt.hal.science/hal-04453622$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brahami, Menaouer</creatorcontrib><creatorcontrib>Zahra, Abdeldjouad Fatma</creatorcontrib><creatorcontrib>Mohammed, Sabri</creatorcontrib><creatorcontrib>Semaoune, Khalissa</creatorcontrib><creatorcontrib>Matta, Nada</creatorcontrib><title>Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques</title><title>International journal of information systems and supply chain management</title><description>In today’s context (competition and knowledge economy), ML and KM on the supply chain level have received increased attention aiming to determine long and short-term success of many companies. However, demand forecasting with maximum accuracy is absolutely critical to invest in various fields, which places the knowledge extract process in high demand. In this paper, we propose a hybrid approach of prediction into a demand forecasting process in supply chain based on the one hand, on the processes analysis for best professional knowledge for required competencies. And on the other hand, the use of different data sources by supervised learning to improve the process of acquiring explicit knowledge, maximizing the efficiency of the demand forecasting, and comparing the obtained efficiency results. Therefore, the results reveal that the practices of KM should be considered as the most important factors affecting the demand forecasting process in supply chain. The classifier performance is examined by using a confusion matrix based on their Accuracy and Kappa value.</description><subject>Computer Science</subject><subject>Discount stores</subject><subject>Industry forecasts</subject><subject>Knowledge management</subject><subject>Logistics</subject><subject>Methods</subject><subject>Operations Research</subject><issn>1935-5726</issn><issn>1935-5734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kcFu1DAQhiMEEqXwApx8RWLL2I4T57haKF3YCqRtz5brTBJXWSd4Nq369jhk1Z6QD7as75_x-MuyjxwucuD6y_bHdr_fXF8IEAJ4WvJVdsYrqVaqlPnr57Mo3mbviO4BVFVJOMvGyyGis3T0oWX7aRz7J7bprA_sKx5sqNl6HONgXcduaUZ-huGxx7pFdm2DbfGA4ch-x8EhERKbE6kKxgdPWLMd2hjm2A26Lvg_E9L77E1je8IPp_08u738drO5Wu1-fd9u1ruVy7k6rpRCVZRQC3S6KMqqEkI73ijdaGycRgl1YW3NEZzWIHKNQt4p4SqnKo3QyPPs01K3s70Zoz_Y-GQG683VemfmO8hzJQshHnhiPy9sa3s0d1OaNI3jA_m2O1JrJyKzLgtQAOkdCRcL7uJAFLF5rs_BzDrMSYd50ZFCbAmhG4Knl4hWUCrByyIh2wXxrTf3wxRD-iBzkmMWOeafHDPL-X8zruRfCV2hGw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Brahami, Menaouer</creator><creator>Zahra, Abdeldjouad Fatma</creator><creator>Mohammed, Sabri</creator><creator>Semaoune, Khalissa</creator><creator>Matta, Nada</creator><general>IGI Global</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5606-2193</orcidid><orcidid>https://orcid.org/0000-0003-0045-9797</orcidid><orcidid>https://orcid.org/0000-0001-8729-3624</orcidid></search><sort><creationdate>20220101</creationdate><title>Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques</title><author>Brahami, Menaouer ; Zahra, Abdeldjouad Fatma ; Mohammed, Sabri ; Semaoune, Khalissa ; Matta, Nada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-55e5670d2ec866799228c1f58f8efc8e30d6aad1e0c880248e23b52c9c598e0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>Discount stores</topic><topic>Industry forecasts</topic><topic>Knowledge management</topic><topic>Logistics</topic><topic>Methods</topic><topic>Operations Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahami, Menaouer</creatorcontrib><creatorcontrib>Zahra, Abdeldjouad Fatma</creatorcontrib><creatorcontrib>Mohammed, Sabri</creatorcontrib><creatorcontrib>Semaoune, Khalissa</creatorcontrib><creatorcontrib>Matta, Nada</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of information systems and supply chain management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brahami, Menaouer</au><au>Zahra, Abdeldjouad Fatma</au><au>Mohammed, Sabri</au><au>Semaoune, Khalissa</au><au>Matta, Nada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques</atitle><jtitle>International journal of information systems and supply chain management</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>15</volume><issue>1</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1935-5726</issn><eissn>1935-5734</eissn><abstract>In today’s context (competition and knowledge economy), ML and KM on the supply chain level have received increased attention aiming to determine long and short-term success of many companies. However, demand forecasting with maximum accuracy is absolutely critical to invest in various fields, which places the knowledge extract process in high demand. In this paper, we propose a hybrid approach of prediction into a demand forecasting process in supply chain based on the one hand, on the processes analysis for best professional knowledge for required competencies. And on the other hand, the use of different data sources by supervised learning to improve the process of acquiring explicit knowledge, maximizing the efficiency of the demand forecasting, and comparing the obtained efficiency results. Therefore, the results reveal that the practices of KM should be considered as the most important factors affecting the demand forecasting process in supply chain. The classifier performance is examined by using a confusion matrix based on their Accuracy and Kappa value.</abstract><pub>IGI Global</pub><doi>10.4018/IJISSCM.2022010103</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5606-2193</orcidid><orcidid>https://orcid.org/0000-0003-0045-9797</orcidid><orcidid>https://orcid.org/0000-0001-8729-3624</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-5726 |
ispartof | International journal of information systems and supply chain management, 2022-01, Vol.15 (1), p.1-21 |
issn | 1935-5726 1935-5734 |
language | eng |
recordid | cdi_gale_businessinsightsgauss_A760500922 |
source | Alma/SFX Local Collection; ProQuest Central |
subjects | Computer Science Discount stores Industry forecasts Knowledge management Logistics Methods Operations Research |
title | Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20Supply%20Chain%20Demand%20Approach%20Using%20Knowledge%20Management%20Processes%20and%20Supervised%20Learning%20Techniques&rft.jtitle=International%20journal%20of%20information%20systems%20and%20supply%20chain%20management&rft.au=Brahami,%20Menaouer&rft.date=2022-01-01&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1935-5726&rft.eissn=1935-5734&rft_id=info:doi/10.4018/IJISSCM.2022010103&rft_dat=%3Cgale_econi%3EA760500922%3C/gale_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A760500922&rfr_iscdi=true |