A Recommender System Based on Multi-Criteria Aggregation
Recommender systems aim to support decision-makers by providing decision advice. We review briefly tools of Multi-Criteria Decision Analysis (MCDA), including aggregation operators, that could be the basis for a recommender system. Then we develop a multi-criteria recommender system, STROMa (SysTem...
Gespeichert in:
Veröffentlicht in: | International journal of decision support system technology 2017-10, Vol.9 (4), p.1-15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recommender systems aim to support decision-makers by providing decision advice. We review briefly tools of Multi-Criteria Decision Analysis (MCDA), including aggregation operators, that could be the basis for a recommender system. Then we develop a multi-criteria recommender system, STROMa (SysTem of RecOmmendation Multi-criteria), to support decisions by aggregating measures of performance contained in a performance matrix. The system makes inferences about preferences using a partial order on criteria input by the decision-maker. To determine a total ordering of the alternatives, STROMa uses a multi-criteria aggregation operator, the Choquet integral of a fuzzy measure. Thus, recommendations are calculated using partial preferences provided by the decision maker and updated by the system. An integrated web platform is under development. |
---|---|
ISSN: | 1941-6296 1941-630X |
DOI: | 10.4018/IJDSST.2017100101 |