A Recommender System Based on Multi-Criteria Aggregation

Recommender systems aim to support decision-makers by providing decision advice. We review briefly tools of Multi-Criteria Decision Analysis (MCDA), including aggregation operators, that could be the basis for a recommender system. Then we develop a multi-criteria recommender system, STROMa (SysTem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of decision support system technology 2017-10, Vol.9 (4), p.1-15
Hauptverfasser: Fomba, Soumana, Zarate, Pascale, Kilgour, Marc, Camilleri, Guy, Konate, Jacqueline, Tangara, Fana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recommender systems aim to support decision-makers by providing decision advice. We review briefly tools of Multi-Criteria Decision Analysis (MCDA), including aggregation operators, that could be the basis for a recommender system. Then we develop a multi-criteria recommender system, STROMa (SysTem of RecOmmendation Multi-criteria), to support decisions by aggregating measures of performance contained in a performance matrix. The system makes inferences about preferences using a partial order on criteria input by the decision-maker. To determine a total ordering of the alternatives, STROMa uses a multi-criteria aggregation operator, the Choquet integral of a fuzzy measure. Thus, recommendations are calculated using partial preferences provided by the decision maker and updated by the system. An integrated web platform is under development.
ISSN:1941-6296
1941-630X
DOI:10.4018/IJDSST.2017100101