Solving Task Scheduling Problem in the Cloud Using a Hybrid Particle Swarm Optimization Approach

Synergistic confluence of pervasive sensing, computing, and networking is generating heterogeneous data at unprecedented scale and complexity. Cloud computing has emergered in the last two decades as a unique storage and computing resource to support a diverse assortment of applications. Numerous or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied metaheuristic computing 2022-01, Vol.13 (1), p.1-25
Hauptverfasser: Cheikh, Salmi, Walker, Jessie J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 1
container_title International journal of applied metaheuristic computing
container_volume 13
creator Cheikh, Salmi
Walker, Jessie J
description Synergistic confluence of pervasive sensing, computing, and networking is generating heterogeneous data at unprecedented scale and complexity. Cloud computing has emergered in the last two decades as a unique storage and computing resource to support a diverse assortment of applications. Numerous organizations are migrating to the cloud to store and process their information. When the cloud infrastructures and resources are insufficient to satisfy end-users requests, scheduling mechanisms are required. Task scheduling, especially in a distributed and heterogeneous system is an NP-hard problem since various task parameters must be considered for an appropriate scheduling. In this paper we propose a hybrid PSO and extremal optimization-based approach to resolve task scheduling in the cloud. The algorithm optimizes makespan which is an important criterion to schedule a number of tasks on different Virtual Machines. Experiments on synthetic and real-life workloads show the capability of the method to successfully schedule task and outperforms many known methods of the state of the art.
doi_str_mv 10.4018/IJAMC.2022010105
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A759697034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759697034</galeid><sourcerecordid>A759697034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b3fc02072f02b49ff826650590bf1d42799dc291cb022d3bc04acd2be2b7f583</originalsourceid><addsrcrecordid>eNp1kMlOwzAQhiMEElXpnaMfgBQvWY9RBG1RUSu1nI3tOIlLNtkJqDw9TovoiRlpPKNZ5P9znHsE5x5E0ePqJXlN5xhiDJF1_8qZoNgL3QjH6Povj8itMzPmAK35XhhCf-K879rqUzUF2DPzAXailNlQjfVWt7ySNVAN6EsJ0qodMvBmxhYDyyPXKgNbpnslKgl2X0zXYNP1qlbfrFdtA5Ku0y0T5Z1zk7PKyNnvO3X2z0_7dOmuN4tVmqxdQVDQu5zkAmIY4hxi7sV5HuEg8KEfQ56jzMNhHGfCqhHciswIF9BjIsNcYh7mfkSmzsP5bMEqSflgPyqNDUYVZW8KNhhDk9CPgziExLPj8DwudGuMljnttKqZPlIE6YiUnpDSC1K7sjivqELRQzvoxsqhlgcd0dELOnpC998dRMgP6SKA_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solving Task Scheduling Problem in the Cloud Using a Hybrid Particle Swarm Optimization Approach</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Cheikh, Salmi ; Walker, Jessie J</creator><creatorcontrib>Cheikh, Salmi ; Walker, Jessie J</creatorcontrib><description>Synergistic confluence of pervasive sensing, computing, and networking is generating heterogeneous data at unprecedented scale and complexity. Cloud computing has emergered in the last two decades as a unique storage and computing resource to support a diverse assortment of applications. Numerous organizations are migrating to the cloud to store and process their information. When the cloud infrastructures and resources are insufficient to satisfy end-users requests, scheduling mechanisms are required. Task scheduling, especially in a distributed and heterogeneous system is an NP-hard problem since various task parameters must be considered for an appropriate scheduling. In this paper we propose a hybrid PSO and extremal optimization-based approach to resolve task scheduling in the cloud. The algorithm optimizes makespan which is an important criterion to schedule a number of tasks on different Virtual Machines. Experiments on synthetic and real-life workloads show the capability of the method to successfully schedule task and outperforms many known methods of the state of the art.</description><identifier>ISSN: 1947-8283</identifier><identifier>EISSN: 1947-8291</identifier><identifier>DOI: 10.4018/IJAMC.2022010105</identifier><language>eng</language><publisher>IGI Global</publisher><subject>Algorithms ; Cloud computing ; Mathematical optimization</subject><ispartof>International journal of applied metaheuristic computing, 2022-01, Vol.13 (1), p.1-25</ispartof><rights>COPYRIGHT 2022 IGI Global</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b3fc02072f02b49ff826650590bf1d42799dc291cb022d3bc04acd2be2b7f583</citedby><cites>FETCH-LOGICAL-c316t-b3fc02072f02b49ff826650590bf1d42799dc291cb022d3bc04acd2be2b7f583</cites><orcidid>0000-0002-8196-5474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheikh, Salmi</creatorcontrib><creatorcontrib>Walker, Jessie J</creatorcontrib><title>Solving Task Scheduling Problem in the Cloud Using a Hybrid Particle Swarm Optimization Approach</title><title>International journal of applied metaheuristic computing</title><description>Synergistic confluence of pervasive sensing, computing, and networking is generating heterogeneous data at unprecedented scale and complexity. Cloud computing has emergered in the last two decades as a unique storage and computing resource to support a diverse assortment of applications. Numerous organizations are migrating to the cloud to store and process their information. When the cloud infrastructures and resources are insufficient to satisfy end-users requests, scheduling mechanisms are required. Task scheduling, especially in a distributed and heterogeneous system is an NP-hard problem since various task parameters must be considered for an appropriate scheduling. In this paper we propose a hybrid PSO and extremal optimization-based approach to resolve task scheduling in the cloud. The algorithm optimizes makespan which is an important criterion to schedule a number of tasks on different Virtual Machines. Experiments on synthetic and real-life workloads show the capability of the method to successfully schedule task and outperforms many known methods of the state of the art.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Mathematical optimization</subject><issn>1947-8283</issn><issn>1947-8291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kMlOwzAQhiMEElXpnaMfgBQvWY9RBG1RUSu1nI3tOIlLNtkJqDw9TovoiRlpPKNZ5P9znHsE5x5E0ePqJXlN5xhiDJF1_8qZoNgL3QjH6Povj8itMzPmAK35XhhCf-K879rqUzUF2DPzAXailNlQjfVWt7ySNVAN6EsJ0qodMvBmxhYDyyPXKgNbpnslKgl2X0zXYNP1qlbfrFdtA5Ku0y0T5Z1zk7PKyNnvO3X2z0_7dOmuN4tVmqxdQVDQu5zkAmIY4hxi7sV5HuEg8KEfQ56jzMNhHGfCqhHciswIF9BjIsNcYh7mfkSmzsP5bMEqSflgPyqNDUYVZW8KNhhDk9CPgziExLPj8DwudGuMljnttKqZPlIE6YiUnpDSC1K7sjivqELRQzvoxsqhlgcd0dELOnpC998dRMgP6SKA_g</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Cheikh, Salmi</creator><creator>Walker, Jessie J</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><orcidid>https://orcid.org/0000-0002-8196-5474</orcidid></search><sort><creationdate>20220101</creationdate><title>Solving Task Scheduling Problem in the Cloud Using a Hybrid Particle Swarm Optimization Approach</title><author>Cheikh, Salmi ; Walker, Jessie J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b3fc02072f02b49ff826650590bf1d42799dc291cb022d3bc04acd2be2b7f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Mathematical optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheikh, Salmi</creatorcontrib><creatorcontrib>Walker, Jessie J</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><jtitle>International journal of applied metaheuristic computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheikh, Salmi</au><au>Walker, Jessie J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Task Scheduling Problem in the Cloud Using a Hybrid Particle Swarm Optimization Approach</atitle><jtitle>International journal of applied metaheuristic computing</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>1947-8283</issn><eissn>1947-8291</eissn><abstract>Synergistic confluence of pervasive sensing, computing, and networking is generating heterogeneous data at unprecedented scale and complexity. Cloud computing has emergered in the last two decades as a unique storage and computing resource to support a diverse assortment of applications. Numerous organizations are migrating to the cloud to store and process their information. When the cloud infrastructures and resources are insufficient to satisfy end-users requests, scheduling mechanisms are required. Task scheduling, especially in a distributed and heterogeneous system is an NP-hard problem since various task parameters must be considered for an appropriate scheduling. In this paper we propose a hybrid PSO and extremal optimization-based approach to resolve task scheduling in the cloud. The algorithm optimizes makespan which is an important criterion to schedule a number of tasks on different Virtual Machines. Experiments on synthetic and real-life workloads show the capability of the method to successfully schedule task and outperforms many known methods of the state of the art.</abstract><pub>IGI Global</pub><doi>10.4018/IJAMC.2022010105</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-8196-5474</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1947-8283
ispartof International journal of applied metaheuristic computing, 2022-01, Vol.13 (1), p.1-25
issn 1947-8283
1947-8291
language eng
recordid cdi_gale_businessinsightsgauss_A759697034
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Cloud computing
Mathematical optimization
title Solving Task Scheduling Problem in the Cloud Using a Hybrid Particle Swarm Optimization Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Task%20Scheduling%20Problem%20in%20the%20Cloud%20Using%20a%20Hybrid%20Particle%20Swarm%20Optimization%20Approach&rft.jtitle=International%20journal%20of%20applied%20metaheuristic%20computing&rft.au=Cheikh,%20Salmi&rft.date=2022-01-01&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=1947-8283&rft.eissn=1947-8291&rft_id=info:doi/10.4018/IJAMC.2022010105&rft_dat=%3Cgale_cross%3EA759697034%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A759697034&rfr_iscdi=true