Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones
Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to...
Gespeichert in:
Veröffentlicht in: | International journal of technology diffusion 2020-04, Vol.11 (2), p.66-81 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | 2 |
container_start_page | 66 |
container_title | International journal of technology diffusion |
container_volume | 11 |
creator | Klouche, Badia Benslimane, Sidi Mohamed Bennabi, Sakina Rim |
description | Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy. |
doi_str_mv | 10.4018/IJTD.2020040105 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A759251249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759251249</galeid><sourcerecordid>A759251249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1996-2ee28dfa84e19f7219ecebbec1a0de93b5bbc3eace42e11145018481890f48a63</originalsourceid><addsrcrecordid>eNp1kc1P3DAQxaOqlYqAc6-WOHBpwOM4JO4tfJQPLVqpu0jcLCeZBEM2Tj3JYaX-8fWyUKQKfLDH1pvn0e9F0TfgR5JDfnx9szw_ElxwHq48_RTtgJJZrBK4__yv5vA12id65GGlMsvSbCf6M3cea-fYL7PGpx-sYKcT2R6J2DlWlqzr2WIaBudHtljTiCt2aghrFt5vp2608cz07WRaZAvsR7sKGyt6063JEnMNK7oWvTU9mw_ozeg8W2KHw4MLf-xFXxrTEe6_nLvR3c-L5dlVPJtfXp8Vs7gCpU5igSjyujG5RFBNJkBhhWWJFRheo0rKtCyrBE2FUiAAyDQgkTnkijcyNyfJbnSw9R28-z0hjfrRTT4MSVqoJMsSIdKN6vtW1ZoOdfmCwfZk24eRWjMR6SJLlUhBSBXkx1t55R2Rx0YP3q6MX2vgehOK3oSi30IJHRfbDtvatwkCfP0MXxf6lb0O7D9wAQg-h-_4_KfTQ90kfwFyPaM5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937732256</pqid></control><display><type>article</type><title>Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones</title><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Klouche, Badia ; Benslimane, Sidi Mohamed ; Bennabi, Sakina Rim</creator><creatorcontrib>Klouche, Badia ; Benslimane, Sidi Mohamed ; Bennabi, Sakina Rim</creatorcontrib><description>Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy.</description><identifier>ISSN: 1947-9301</identifier><identifier>EISSN: 1947-931X</identifier><identifier>DOI: 10.4018/IJTD.2020040105</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Arabic language ; Computational linguistics ; Customers ; Data mining ; Decision analysis ; Decision support systems ; Dialects ; Language processing ; Natural language interfaces ; Sentiment analysis ; Social networks ; Support vector machines</subject><ispartof>International journal of technology diffusion, 2020-04, Vol.11 (2), p.66-81</ispartof><rights>COPYRIGHT 2020 IGI Global</rights><rights>Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1996-2ee28dfa84e19f7219ecebbec1a0de93b5bbc3eace42e11145018481890f48a63</cites><orcidid>0000-0002-7008-7434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2937732256?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,43805,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Klouche, Badia</creatorcontrib><creatorcontrib>Benslimane, Sidi Mohamed</creatorcontrib><creatorcontrib>Bennabi, Sakina Rim</creatorcontrib><title>Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones</title><title>International journal of technology diffusion</title><description>Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy.</description><subject>Arabic language</subject><subject>Computational linguistics</subject><subject>Customers</subject><subject>Data mining</subject><subject>Decision analysis</subject><subject>Decision support systems</subject><subject>Dialects</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Support vector machines</subject><issn>1947-9301</issn><issn>1947-931X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1P3DAQxaOqlYqAc6-WOHBpwOM4JO4tfJQPLVqpu0jcLCeZBEM2Tj3JYaX-8fWyUKQKfLDH1pvn0e9F0TfgR5JDfnx9szw_ElxwHq48_RTtgJJZrBK4__yv5vA12id65GGlMsvSbCf6M3cea-fYL7PGpx-sYKcT2R6J2DlWlqzr2WIaBudHtljTiCt2aghrFt5vp2608cz07WRaZAvsR7sKGyt6063JEnMNK7oWvTU9mw_ozeg8W2KHw4MLf-xFXxrTEe6_nLvR3c-L5dlVPJtfXp8Vs7gCpU5igSjyujG5RFBNJkBhhWWJFRheo0rKtCyrBE2FUiAAyDQgkTnkijcyNyfJbnSw9R28-z0hjfrRTT4MSVqoJMsSIdKN6vtW1ZoOdfmCwfZk24eRWjMR6SJLlUhBSBXkx1t55R2Rx0YP3q6MX2vgehOK3oSi30IJHRfbDtvatwkCfP0MXxf6lb0O7D9wAQg-h-_4_KfTQ90kfwFyPaM5</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Klouche, Badia</creator><creator>Benslimane, Sidi Mohamed</creator><creator>Bennabi, Sakina Rim</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7008-7434</orcidid></search><sort><creationdate>20200401</creationdate><title>Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones</title><author>Klouche, Badia ; Benslimane, Sidi Mohamed ; Bennabi, Sakina Rim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1996-2ee28dfa84e19f7219ecebbec1a0de93b5bbc3eace42e11145018481890f48a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabic language</topic><topic>Computational linguistics</topic><topic>Customers</topic><topic>Data mining</topic><topic>Decision analysis</topic><topic>Decision support systems</topic><topic>Dialects</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klouche, Badia</creatorcontrib><creatorcontrib>Benslimane, Sidi Mohamed</creatorcontrib><creatorcontrib>Bennabi, Sakina Rim</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of technology diffusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klouche, Badia</au><au>Benslimane, Sidi Mohamed</au><au>Bennabi, Sakina Rim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones</atitle><jtitle>International journal of technology diffusion</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>11</volume><issue>2</issue><spage>66</spage><epage>81</epage><pages>66-81</pages><issn>1947-9301</issn><eissn>1947-931X</eissn><abstract>Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJTD.2020040105</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7008-7434</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1947-9301 |
ispartof | International journal of technology diffusion, 2020-04, Vol.11 (2), p.66-81 |
issn | 1947-9301 1947-931X |
language | eng |
recordid | cdi_gale_businessinsightsgauss_A759251249 |
source | ProQuest Central UK/Ireland; ProQuest Central |
subjects | Arabic language Computational linguistics Customers Data mining Decision analysis Decision support systems Dialects Language processing Natural language interfaces Sentiment analysis Social networks Support vector machines |
title | Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ooredoo%20Rayek:%20A%20Business%20Decision%20Support%20System%20Based%20on%20Multi-Language%20Sentiment%20Analysis%20of%20Algerian%20Operator%20Telephones&rft.jtitle=International%20journal%20of%20technology%20diffusion&rft.au=Klouche,%20Badia&rft.date=2020-04-01&rft.volume=11&rft.issue=2&rft.spage=66&rft.epage=81&rft.pages=66-81&rft.issn=1947-9301&rft.eissn=1947-931X&rft_id=info:doi/10.4018/IJTD.2020040105&rft_dat=%3Cgale_proqu%3EA759251249%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937732256&rft_id=info:pmid/&rft_galeid=A759251249&rfr_iscdi=true |