Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones

Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of technology diffusion 2020-04, Vol.11 (2), p.66-81
Hauptverfasser: Klouche, Badia, Benslimane, Sidi Mohamed, Bennabi, Sakina Rim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue 2
container_start_page 66
container_title International journal of technology diffusion
container_volume 11
creator Klouche, Badia
Benslimane, Sidi Mohamed
Bennabi, Sakina Rim
description Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy.
doi_str_mv 10.4018/IJTD.2020040105
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A759251249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759251249</galeid><sourcerecordid>A759251249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1996-2ee28dfa84e19f7219ecebbec1a0de93b5bbc3eace42e11145018481890f48a63</originalsourceid><addsrcrecordid>eNp1kc1P3DAQxaOqlYqAc6-WOHBpwOM4JO4tfJQPLVqpu0jcLCeZBEM2Tj3JYaX-8fWyUKQKfLDH1pvn0e9F0TfgR5JDfnx9szw_ElxwHq48_RTtgJJZrBK4__yv5vA12id65GGlMsvSbCf6M3cea-fYL7PGpx-sYKcT2R6J2DlWlqzr2WIaBudHtljTiCt2aghrFt5vp2608cz07WRaZAvsR7sKGyt6063JEnMNK7oWvTU9mw_ozeg8W2KHw4MLf-xFXxrTEe6_nLvR3c-L5dlVPJtfXp8Vs7gCpU5igSjyujG5RFBNJkBhhWWJFRheo0rKtCyrBE2FUiAAyDQgkTnkijcyNyfJbnSw9R28-z0hjfrRTT4MSVqoJMsSIdKN6vtW1ZoOdfmCwfZk24eRWjMR6SJLlUhBSBXkx1t55R2Rx0YP3q6MX2vgehOK3oSi30IJHRfbDtvatwkCfP0MXxf6lb0O7D9wAQg-h-_4_KfTQ90kfwFyPaM5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937732256</pqid></control><display><type>article</type><title>Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones</title><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Klouche, Badia ; Benslimane, Sidi Mohamed ; Bennabi, Sakina Rim</creator><creatorcontrib>Klouche, Badia ; Benslimane, Sidi Mohamed ; Bennabi, Sakina Rim</creatorcontrib><description>Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy.</description><identifier>ISSN: 1947-9301</identifier><identifier>EISSN: 1947-931X</identifier><identifier>DOI: 10.4018/IJTD.2020040105</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Arabic language ; Computational linguistics ; Customers ; Data mining ; Decision analysis ; Decision support systems ; Dialects ; Language processing ; Natural language interfaces ; Sentiment analysis ; Social networks ; Support vector machines</subject><ispartof>International journal of technology diffusion, 2020-04, Vol.11 (2), p.66-81</ispartof><rights>COPYRIGHT 2020 IGI Global</rights><rights>Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1996-2ee28dfa84e19f7219ecebbec1a0de93b5bbc3eace42e11145018481890f48a63</cites><orcidid>0000-0002-7008-7434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2937732256?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,43805,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Klouche, Badia</creatorcontrib><creatorcontrib>Benslimane, Sidi Mohamed</creatorcontrib><creatorcontrib>Bennabi, Sakina Rim</creatorcontrib><title>Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones</title><title>International journal of technology diffusion</title><description>Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy.</description><subject>Arabic language</subject><subject>Computational linguistics</subject><subject>Customers</subject><subject>Data mining</subject><subject>Decision analysis</subject><subject>Decision support systems</subject><subject>Dialects</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Support vector machines</subject><issn>1947-9301</issn><issn>1947-931X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1P3DAQxaOqlYqAc6-WOHBpwOM4JO4tfJQPLVqpu0jcLCeZBEM2Tj3JYaX-8fWyUKQKfLDH1pvn0e9F0TfgR5JDfnx9szw_ElxwHq48_RTtgJJZrBK4__yv5vA12id65GGlMsvSbCf6M3cea-fYL7PGpx-sYKcT2R6J2DlWlqzr2WIaBudHtljTiCt2aghrFt5vp2608cz07WRaZAvsR7sKGyt6063JEnMNK7oWvTU9mw_ozeg8W2KHw4MLf-xFXxrTEe6_nLvR3c-L5dlVPJtfXp8Vs7gCpU5igSjyujG5RFBNJkBhhWWJFRheo0rKtCyrBE2FUiAAyDQgkTnkijcyNyfJbnSw9R28-z0hjfrRTT4MSVqoJMsSIdKN6vtW1ZoOdfmCwfZk24eRWjMR6SJLlUhBSBXkx1t55R2Rx0YP3q6MX2vgehOK3oSi30IJHRfbDtvatwkCfP0MXxf6lb0O7D9wAQg-h-_4_KfTQ90kfwFyPaM5</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Klouche, Badia</creator><creator>Benslimane, Sidi Mohamed</creator><creator>Bennabi, Sakina Rim</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7008-7434</orcidid></search><sort><creationdate>20200401</creationdate><title>Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones</title><author>Klouche, Badia ; Benslimane, Sidi Mohamed ; Bennabi, Sakina Rim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1996-2ee28dfa84e19f7219ecebbec1a0de93b5bbc3eace42e11145018481890f48a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabic language</topic><topic>Computational linguistics</topic><topic>Customers</topic><topic>Data mining</topic><topic>Decision analysis</topic><topic>Decision support systems</topic><topic>Dialects</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klouche, Badia</creatorcontrib><creatorcontrib>Benslimane, Sidi Mohamed</creatorcontrib><creatorcontrib>Bennabi, Sakina Rim</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of technology diffusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klouche, Badia</au><au>Benslimane, Sidi Mohamed</au><au>Bennabi, Sakina Rim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones</atitle><jtitle>International journal of technology diffusion</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>11</volume><issue>2</issue><spage>66</spage><epage>81</epage><pages>66-81</pages><issn>1947-9301</issn><eissn>1947-931X</eissn><abstract>Sentiment analysis is one of the recent areas of emerging research in the classification of sentiment polarity and text mining, particularly with the considerable number of opinions available on social media. The Algerian Operator Telephone Ooredoo, as other operators, deploys in its new strategy to conquer new customers, by exploiting their opinions through a sentiments analysis. The purpose of this work is to set up a system called “Ooredoo Rayek”, whose objective is to collect, transliterate, translate and classify the textual data expressed by the Ooredoo operator's customers. This article developed a set of rules allowing the transliteration from Algerian Arabizi to Algerian dialect. Furthermore, the authors used Naïve Bayes (NB) and (Support Vector Machine) SVM classifiers to assign polarity tags to Facebook comments from the official pages of Ooredoo written in multilingual and multi-dialect context. Experimental results show that the system obtains good performance with 83% of accuracy.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJTD.2020040105</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7008-7434</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1947-9301
ispartof International journal of technology diffusion, 2020-04, Vol.11 (2), p.66-81
issn 1947-9301
1947-931X
language eng
recordid cdi_gale_businessinsightsgauss_A759251249
source ProQuest Central UK/Ireland; ProQuest Central
subjects Arabic language
Computational linguistics
Customers
Data mining
Decision analysis
Decision support systems
Dialects
Language processing
Natural language interfaces
Sentiment analysis
Social networks
Support vector machines
title Ooredoo Rayek: A Business Decision Support System Based on Multi-Language Sentiment Analysis of Algerian Operator Telephones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ooredoo%20Rayek:%20A%20Business%20Decision%20Support%20System%20Based%20on%20Multi-Language%20Sentiment%20Analysis%20of%20Algerian%20Operator%20Telephones&rft.jtitle=International%20journal%20of%20technology%20diffusion&rft.au=Klouche,%20Badia&rft.date=2020-04-01&rft.volume=11&rft.issue=2&rft.spage=66&rft.epage=81&rft.pages=66-81&rft.issn=1947-9301&rft.eissn=1947-931X&rft_id=info:doi/10.4018/IJTD.2020040105&rft_dat=%3Cgale_proqu%3EA759251249%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937732256&rft_id=info:pmid/&rft_galeid=A759251249&rfr_iscdi=true