Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing

The aim of this paper is to synthesize and analyze existing evidence on sustainable smart manufacturing. Using and replicating data from Capgemini, Deloitte, Forrester, PwC, Software AG, we.CONECT, and World Economic Forum, we performed analyses and made estimates regarding the relationship between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of self-governance and management economics 2020, Vol.8 (3), p.37-43
Hauptverfasser: White, Thomas, Grecu, Iulia, Grecu, Gheorghe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 3
container_start_page 37
container_title Journal of self-governance and management economics
container_volume 8
creator White, Thomas
Grecu, Iulia
Grecu, Gheorghe
description The aim of this paper is to synthesize and analyze existing evidence on sustainable smart manufacturing. Using and replicating data from Capgemini, Deloitte, Forrester, PwC, Software AG, we.CONECT, and World Economic Forum, we performed analyses and made estimates regarding the relationship between digitized mass production, real-time process monitoring, and big data analytics systems. Data were analyzed using structural equation modeling.
doi_str_mv 10.22381/JSME8320205
format Article
fullrecord <record><control><sourceid>ceeol_gale_</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A636969209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A636969209</galeid><ceeol_id>895946</ceeol_id><sourcerecordid>895946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3505-10a99aa46d1fe6348069c2f02c8b44b350c78a03ac048d0b706cecf6758c8843</originalsourceid><addsrcrecordid>eNptkc2P0zAQxSMEEqtlbxw5WOLaLBPbcexj2Q8-tBWI9h5NHSfMKrVL7By6fz0uW4kiIR9szfzm-elNUbyt4JpzoasPX9erOy04cKhfFBdcNE0JxqiXxzc3paya-nVxFeMjAFRC1qDURfF0SwMlenIdW2GM7PsUutkmCn7Bfjgcyw3t3LFqXe6ugqcUJvLDgqHv2Eca2C0mZEuP4yGRjWx9iMntIiPP1nNMSB63o2PrHU4pf-HnHm2ajxJvilc9jtFdne7LYnN_t7n5XD58-_TlZvlQWlFDXVaAxiBK1VW9U0JqUMbyHrjVWym3mbGNRhBoQeoOtg0o62yvmlpbraW4LN4_y-6n8Gt2MbWPYZ6y39hyKWXNhYEmU9fP1ICja8n3IU1o8-ncjmzwrqdcXyqhjDIcTB5YnA1s50g-J0Q-0vAzxQHnGP-L2ynEOLm-3U-UMzm0FbR_9tee7S_j7064c2H861ib2kh1pvZvO2dMNtvpgj2h7b7rxW8tUKXP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444523907</pqid></control><display><type>article</type><title>Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing</title><source>Central and Eastern European Online Library - CEEOL Journals</source><creator>White, Thomas ; Grecu, Iulia ; Grecu, Gheorghe</creator><creatorcontrib>White, Thomas ; Grecu, Iulia ; Grecu, Gheorghe</creatorcontrib><description>The aim of this paper is to synthesize and analyze existing evidence on sustainable smart manufacturing. Using and replicating data from Capgemini, Deloitte, Forrester, PwC, Software AG, we.CONECT, and World Economic Forum, we performed analyses and made estimates regarding the relationship between digitized mass production, real-time process monitoring, and big data analytics systems. Data were analyzed using structural equation modeling.</description><identifier>ISSN: 2329-4175</identifier><identifier>EISSN: 2377-0996</identifier><identifier>DOI: 10.22381/JSME8320205</identifier><language>eng</language><publisher>Woodside: Addleton Academic Publishers</publisher><subject>Bibliometrics ; Big Data ; Business Economy / Management ; Conflicts of interest ; Data analysis ; Data processing ; Decision making ; Digitization ; Economic growth ; Economic summit conferences ; ICT Information and Communications Technologies ; Industry 4.0 ; International relations ; Internet ; Land use ; Manufacturing ; Neurosciences ; Purchase intention ; Software ; Software industry ; Structural equation modeling ; Sustainability</subject><ispartof>Journal of self-governance and management economics, 2020, Vol.8 (3), p.37-43</ispartof><rights>COPYRIGHT 2020 Addleton Academic Publishers</rights><rights>Copyright Addleton Academic Publishers 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3505-10a99aa46d1fe6348069c2f02c8b44b350c78a03ac048d0b706cecf6758c8843</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.ceeol.com//api/image/getissuecoverimage?id=picture_2020_56573.jpg</thumbnail><link.rule.ids>314,780,784,4024,21362,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>White, Thomas</creatorcontrib><creatorcontrib>Grecu, Iulia</creatorcontrib><creatorcontrib>Grecu, Gheorghe</creatorcontrib><title>Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing</title><title>Journal of self-governance and management economics</title><addtitle>Journal of SelfGovernance and Management Economics</addtitle><description>The aim of this paper is to synthesize and analyze existing evidence on sustainable smart manufacturing. Using and replicating data from Capgemini, Deloitte, Forrester, PwC, Software AG, we.CONECT, and World Economic Forum, we performed analyses and made estimates regarding the relationship between digitized mass production, real-time process monitoring, and big data analytics systems. Data were analyzed using structural equation modeling.</description><subject>Bibliometrics</subject><subject>Big Data</subject><subject>Business Economy / Management</subject><subject>Conflicts of interest</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Decision making</subject><subject>Digitization</subject><subject>Economic growth</subject><subject>Economic summit conferences</subject><subject>ICT Information and Communications Technologies</subject><subject>Industry 4.0</subject><subject>International relations</subject><subject>Internet</subject><subject>Land use</subject><subject>Manufacturing</subject><subject>Neurosciences</subject><subject>Purchase intention</subject><subject>Software</subject><subject>Software industry</subject><subject>Structural equation modeling</subject><subject>Sustainability</subject><issn>2329-4175</issn><issn>2377-0996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>REL</sourceid><sourceid>N95</sourceid><recordid>eNptkc2P0zAQxSMEEqtlbxw5WOLaLBPbcexj2Q8-tBWI9h5NHSfMKrVL7By6fz0uW4kiIR9szfzm-elNUbyt4JpzoasPX9erOy04cKhfFBdcNE0JxqiXxzc3paya-nVxFeMjAFRC1qDURfF0SwMlenIdW2GM7PsUutkmCn7Bfjgcyw3t3LFqXe6ugqcUJvLDgqHv2Eca2C0mZEuP4yGRjWx9iMntIiPP1nNMSB63o2PrHU4pf-HnHm2ajxJvilc9jtFdne7LYnN_t7n5XD58-_TlZvlQWlFDXVaAxiBK1VW9U0JqUMbyHrjVWym3mbGNRhBoQeoOtg0o62yvmlpbraW4LN4_y-6n8Gt2MbWPYZ6y39hyKWXNhYEmU9fP1ICja8n3IU1o8-ncjmzwrqdcXyqhjDIcTB5YnA1s50g-J0Q-0vAzxQHnGP-L2ynEOLm-3U-UMzm0FbR_9tee7S_j7064c2H861ib2kh1pvZvO2dMNtvpgj2h7b7rxW8tUKXP</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>White, Thomas</creator><creator>Grecu, Iulia</creator><creator>Grecu, Gheorghe</creator><general>Addleton Academic Publishers</general><scope>AE2</scope><scope>REL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope></search><sort><creationdate>2020</creationdate><title>Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing</title><author>White, Thomas ; Grecu, Iulia ; Grecu, Gheorghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3505-10a99aa46d1fe6348069c2f02c8b44b350c78a03ac048d0b706cecf6758c8843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bibliometrics</topic><topic>Big Data</topic><topic>Business Economy / Management</topic><topic>Conflicts of interest</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Decision making</topic><topic>Digitization</topic><topic>Economic growth</topic><topic>Economic summit conferences</topic><topic>ICT Information and Communications Technologies</topic><topic>Industry 4.0</topic><topic>International relations</topic><topic>Internet</topic><topic>Land use</topic><topic>Manufacturing</topic><topic>Neurosciences</topic><topic>Purchase intention</topic><topic>Software</topic><topic>Software industry</topic><topic>Structural equation modeling</topic><topic>Sustainability</topic><toplevel>online_resources</toplevel><creatorcontrib>White, Thomas</creatorcontrib><creatorcontrib>Grecu, Iulia</creatorcontrib><creatorcontrib>Grecu, Gheorghe</creatorcontrib><collection>Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen)</collection><collection>Central and Eastern European Online Library - CEEOL Journals</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><jtitle>Journal of self-governance and management economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Thomas</au><au>Grecu, Iulia</au><au>Grecu, Gheorghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing</atitle><jtitle>Journal of self-governance and management economics</jtitle><addtitle>Journal of SelfGovernance and Management Economics</addtitle><date>2020</date><risdate>2020</risdate><volume>8</volume><issue>3</issue><spage>37</spage><epage>43</epage><pages>37-43</pages><issn>2329-4175</issn><eissn>2377-0996</eissn><abstract>The aim of this paper is to synthesize and analyze existing evidence on sustainable smart manufacturing. Using and replicating data from Capgemini, Deloitte, Forrester, PwC, Software AG, we.CONECT, and World Economic Forum, we performed analyses and made estimates regarding the relationship between digitized mass production, real-time process monitoring, and big data analytics systems. Data were analyzed using structural equation modeling.</abstract><cop>Woodside</cop><pub>Addleton Academic Publishers</pub><doi>10.22381/JSME8320205</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-4175
ispartof Journal of self-governance and management economics, 2020, Vol.8 (3), p.37-43
issn 2329-4175
2377-0996
language eng
recordid cdi_gale_businessinsightsgauss_A636969209
source Central and Eastern European Online Library - CEEOL Journals
subjects Bibliometrics
Big Data
Business Economy / Management
Conflicts of interest
Data analysis
Data processing
Decision making
Digitization
Economic growth
Economic summit conferences
ICT Information and Communications Technologies
Industry 4.0
International relations
Internet
Land use
Manufacturing
Neurosciences
Purchase intention
Software
Software industry
Structural equation modeling
Sustainability
title Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ceeol_gale_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digitized%20Mass%20Production,%20Real-Time%20Process%20Monitoring,%20and%20Big%20Data%20Analytics%20Systems%20in%20Sustainable%20Smart%20Manufacturing&rft.jtitle=Journal%20of%20self-governance%20and%20management%20economics&rft.au=White,%20Thomas&rft.date=2020&rft.volume=8&rft.issue=3&rft.spage=37&rft.epage=43&rft.pages=37-43&rft.issn=2329-4175&rft.eissn=2377-0996&rft_id=info:doi/10.22381/JSME8320205&rft_dat=%3Cceeol_gale_%3E895946%3C/ceeol_gale_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444523907&rft_id=info:pmid/&rft_galeid=A636969209&rft_ceeol_id=895946&rfr_iscdi=true