Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing
The aim of this paper is to synthesize and analyze existing evidence on sustainable smart manufacturing. Using and replicating data from Capgemini, Deloitte, Forrester, PwC, Software AG, we.CONECT, and World Economic Forum, we performed analyses and made estimates regarding the relationship between...
Gespeichert in:
Veröffentlicht in: | Journal of self-governance and management economics 2020, Vol.8 (3), p.37-43 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 3 |
container_start_page | 37 |
container_title | Journal of self-governance and management economics |
container_volume | 8 |
creator | White, Thomas Grecu, Iulia Grecu, Gheorghe |
description | The aim of this paper is to synthesize and analyze existing evidence on sustainable smart manufacturing. Using and replicating data from Capgemini, Deloitte, Forrester, PwC, Software AG, we.CONECT, and World Economic Forum, we performed analyses and made estimates regarding the relationship between digitized mass production, real-time process monitoring, and big data analytics systems. Data were analyzed using structural equation modeling. |
doi_str_mv | 10.22381/JSME8320205 |
format | Article |
fullrecord | <record><control><sourceid>ceeol_gale_</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A636969209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A636969209</galeid><ceeol_id>895946</ceeol_id><sourcerecordid>895946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3505-10a99aa46d1fe6348069c2f02c8b44b350c78a03ac048d0b706cecf6758c8843</originalsourceid><addsrcrecordid>eNptkc2P0zAQxSMEEqtlbxw5WOLaLBPbcexj2Q8-tBWI9h5NHSfMKrVL7By6fz0uW4kiIR9szfzm-elNUbyt4JpzoasPX9erOy04cKhfFBdcNE0JxqiXxzc3paya-nVxFeMjAFRC1qDURfF0SwMlenIdW2GM7PsUutkmCn7Bfjgcyw3t3LFqXe6ugqcUJvLDgqHv2Eca2C0mZEuP4yGRjWx9iMntIiPP1nNMSB63o2PrHU4pf-HnHm2ajxJvilc9jtFdne7LYnN_t7n5XD58-_TlZvlQWlFDXVaAxiBK1VW9U0JqUMbyHrjVWym3mbGNRhBoQeoOtg0o62yvmlpbraW4LN4_y-6n8Gt2MbWPYZ6y39hyKWXNhYEmU9fP1ICja8n3IU1o8-ncjmzwrqdcXyqhjDIcTB5YnA1s50g-J0Q-0vAzxQHnGP-L2ynEOLm-3U-UMzm0FbR_9tee7S_j7064c2H861ib2kh1pvZvO2dMNtvpgj2h7b7rxW8tUKXP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444523907</pqid></control><display><type>article</type><title>Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing</title><source>Central and Eastern European Online Library - CEEOL Journals</source><creator>White, Thomas ; Grecu, Iulia ; Grecu, Gheorghe</creator><creatorcontrib>White, Thomas ; Grecu, Iulia ; Grecu, Gheorghe</creatorcontrib><description>The aim of this paper is to synthesize and analyze existing evidence on sustainable smart manufacturing. Using and replicating data from Capgemini, Deloitte, Forrester, PwC, Software AG, we.CONECT, and World Economic Forum, we performed analyses and made estimates regarding the relationship between digitized mass production, real-time process monitoring, and big data analytics systems. Data were analyzed using structural equation modeling.</description><identifier>ISSN: 2329-4175</identifier><identifier>EISSN: 2377-0996</identifier><identifier>DOI: 10.22381/JSME8320205</identifier><language>eng</language><publisher>Woodside: Addleton Academic Publishers</publisher><subject>Bibliometrics ; Big Data ; Business Economy / Management ; Conflicts of interest ; Data analysis ; Data processing ; Decision making ; Digitization ; Economic growth ; Economic summit conferences ; ICT Information and Communications Technologies ; Industry 4.0 ; International relations ; Internet ; Land use ; Manufacturing ; Neurosciences ; Purchase intention ; Software ; Software industry ; Structural equation modeling ; Sustainability</subject><ispartof>Journal of self-governance and management economics, 2020, Vol.8 (3), p.37-43</ispartof><rights>COPYRIGHT 2020 Addleton Academic Publishers</rights><rights>Copyright Addleton Academic Publishers 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3505-10a99aa46d1fe6348069c2f02c8b44b350c78a03ac048d0b706cecf6758c8843</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.ceeol.com//api/image/getissuecoverimage?id=picture_2020_56573.jpg</thumbnail><link.rule.ids>314,780,784,4024,21362,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>White, Thomas</creatorcontrib><creatorcontrib>Grecu, Iulia</creatorcontrib><creatorcontrib>Grecu, Gheorghe</creatorcontrib><title>Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing</title><title>Journal of self-governance and management economics</title><addtitle>Journal of SelfGovernance and Management Economics</addtitle><description>The aim of this paper is to synthesize and analyze existing evidence on sustainable smart manufacturing. Using and replicating data from Capgemini, Deloitte, Forrester, PwC, Software AG, we.CONECT, and World Economic Forum, we performed analyses and made estimates regarding the relationship between digitized mass production, real-time process monitoring, and big data analytics systems. Data were analyzed using structural equation modeling.</description><subject>Bibliometrics</subject><subject>Big Data</subject><subject>Business Economy / Management</subject><subject>Conflicts of interest</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Decision making</subject><subject>Digitization</subject><subject>Economic growth</subject><subject>Economic summit conferences</subject><subject>ICT Information and Communications Technologies</subject><subject>Industry 4.0</subject><subject>International relations</subject><subject>Internet</subject><subject>Land use</subject><subject>Manufacturing</subject><subject>Neurosciences</subject><subject>Purchase intention</subject><subject>Software</subject><subject>Software industry</subject><subject>Structural equation modeling</subject><subject>Sustainability</subject><issn>2329-4175</issn><issn>2377-0996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>REL</sourceid><sourceid>N95</sourceid><recordid>eNptkc2P0zAQxSMEEqtlbxw5WOLaLBPbcexj2Q8-tBWI9h5NHSfMKrVL7By6fz0uW4kiIR9szfzm-elNUbyt4JpzoasPX9erOy04cKhfFBdcNE0JxqiXxzc3paya-nVxFeMjAFRC1qDURfF0SwMlenIdW2GM7PsUutkmCn7Bfjgcyw3t3LFqXe6ugqcUJvLDgqHv2Eca2C0mZEuP4yGRjWx9iMntIiPP1nNMSB63o2PrHU4pf-HnHm2ajxJvilc9jtFdne7LYnN_t7n5XD58-_TlZvlQWlFDXVaAxiBK1VW9U0JqUMbyHrjVWym3mbGNRhBoQeoOtg0o62yvmlpbraW4LN4_y-6n8Gt2MbWPYZ6y39hyKWXNhYEmU9fP1ICja8n3IU1o8-ncjmzwrqdcXyqhjDIcTB5YnA1s50g-J0Q-0vAzxQHnGP-L2ynEOLm-3U-UMzm0FbR_9tee7S_j7064c2H861ib2kh1pvZvO2dMNtvpgj2h7b7rxW8tUKXP</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>White, Thomas</creator><creator>Grecu, Iulia</creator><creator>Grecu, Gheorghe</creator><general>Addleton Academic Publishers</general><scope>AE2</scope><scope>REL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope></search><sort><creationdate>2020</creationdate><title>Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing</title><author>White, Thomas ; Grecu, Iulia ; Grecu, Gheorghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3505-10a99aa46d1fe6348069c2f02c8b44b350c78a03ac048d0b706cecf6758c8843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bibliometrics</topic><topic>Big Data</topic><topic>Business Economy / Management</topic><topic>Conflicts of interest</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Decision making</topic><topic>Digitization</topic><topic>Economic growth</topic><topic>Economic summit conferences</topic><topic>ICT Information and Communications Technologies</topic><topic>Industry 4.0</topic><topic>International relations</topic><topic>Internet</topic><topic>Land use</topic><topic>Manufacturing</topic><topic>Neurosciences</topic><topic>Purchase intention</topic><topic>Software</topic><topic>Software industry</topic><topic>Structural equation modeling</topic><topic>Sustainability</topic><toplevel>online_resources</toplevel><creatorcontrib>White, Thomas</creatorcontrib><creatorcontrib>Grecu, Iulia</creatorcontrib><creatorcontrib>Grecu, Gheorghe</creatorcontrib><collection>Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen)</collection><collection>Central and Eastern European Online Library - CEEOL Journals</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><jtitle>Journal of self-governance and management economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Thomas</au><au>Grecu, Iulia</au><au>Grecu, Gheorghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing</atitle><jtitle>Journal of self-governance and management economics</jtitle><addtitle>Journal of SelfGovernance and Management Economics</addtitle><date>2020</date><risdate>2020</risdate><volume>8</volume><issue>3</issue><spage>37</spage><epage>43</epage><pages>37-43</pages><issn>2329-4175</issn><eissn>2377-0996</eissn><abstract>The aim of this paper is to synthesize and analyze existing evidence on sustainable smart manufacturing. Using and replicating data from Capgemini, Deloitte, Forrester, PwC, Software AG, we.CONECT, and World Economic Forum, we performed analyses and made estimates regarding the relationship between digitized mass production, real-time process monitoring, and big data analytics systems. Data were analyzed using structural equation modeling.</abstract><cop>Woodside</cop><pub>Addleton Academic Publishers</pub><doi>10.22381/JSME8320205</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-4175 |
ispartof | Journal of self-governance and management economics, 2020, Vol.8 (3), p.37-43 |
issn | 2329-4175 2377-0996 |
language | eng |
recordid | cdi_gale_businessinsightsgauss_A636969209 |
source | Central and Eastern European Online Library - CEEOL Journals |
subjects | Bibliometrics Big Data Business Economy / Management Conflicts of interest Data analysis Data processing Decision making Digitization Economic growth Economic summit conferences ICT Information and Communications Technologies Industry 4.0 International relations Internet Land use Manufacturing Neurosciences Purchase intention Software Software industry Structural equation modeling Sustainability |
title | Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ceeol_gale_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digitized%20Mass%20Production,%20Real-Time%20Process%20Monitoring,%20and%20Big%20Data%20Analytics%20Systems%20in%20Sustainable%20Smart%20Manufacturing&rft.jtitle=Journal%20of%20self-governance%20and%20management%20economics&rft.au=White,%20Thomas&rft.date=2020&rft.volume=8&rft.issue=3&rft.spage=37&rft.epage=43&rft.pages=37-43&rft.issn=2329-4175&rft.eissn=2377-0996&rft_id=info:doi/10.22381/JSME8320205&rft_dat=%3Cceeol_gale_%3E895946%3C/ceeol_gale_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444523907&rft_id=info:pmid/&rft_galeid=A636969209&rft_ceeol_id=895946&rfr_iscdi=true |