Loss Functions in Option Valuation: A Framework for Selection
In this paper, we investigate the importance of different loss functions when estimating and evaluating option pricing models. Our analysis shows that it is important to take into account parameter uncertainty, because this leads to uncertainty in the predicted option price. We illustrate the effect...
Gespeichert in:
Veröffentlicht in: | Management science 2009-05, Vol.55 (5), p.853-862 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 862 |
---|---|
container_issue | 5 |
container_start_page | 853 |
container_title | Management science |
container_volume | 55 |
creator | Bams, Dennis Lehnert, Thorsten Wolff, Christian C. P |
description | In this paper, we investigate the importance of different loss functions when estimating and evaluating option pricing models. Our analysis shows that it is important to take into account parameter uncertainty, because this leads to uncertainty in the predicted option price. We illustrate the effect on the out-of-sample pricing errors in an application of the ad hoc Black-Scholes model to DAX index options. We confirm the empirical results of Christoffersen and Jacobs (Christoffersen, P., K. Jacobs. 2004. The importance of the loss function in option valuation. J. Financial Econom. 72 291–318) and find strong evidence for their conjecture that the squared pricing error criterion may serve as a general-purpose loss function in option valuation applications. At the same time, we provide a first yardstick to evaluate the adequacy of the loss function. This is accomplished through a data-driven method to deliver not just a point estimate of the root mean squared pricing error, but a distribution . |
doi_str_mv | 10.1287/mnsc.1080.0976 |
format | Article |
fullrecord | <record><control><sourceid>gale_jstor</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A200907769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A200907769</galeid><jstor_id>40539193</jstor_id><sourcerecordid>A200907769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c654t-4f0ee4299278cf4106e1e92bf0160a51082c2ff66b5e53dd99436fbac9fbcb893</originalsourceid><addsrcrecordid>eNqFkd-rFCEUx4coaLv12lswBNVLs6kzOhr0sFzafrBwH_rxKo573HWb0U1nutz_Pr1z2SIWQo6Kfs7X4_kWxVOMlpjw9s3gol5ixNESiZbdKxaYElZRivD9YoEQoRUWSDwsHsV4QAi1vGWL4t3Gx1iuJ6dH610srSuvjnlbflf9pPLubbkq10ENcO3Dj9L4UH6BHm75x8UDo_oIT-7Wi-Lb-v3Xy4_V5urDp8vVptKMNmPVGATQECFIy7VpMGKAQZDOIMyQoqlmookxjHUUaL3dCtHUzHRKC9Ppjov6ong56x6D_zlBHOVgo4a-Vw78FGXd4qbljCbw-T_gwU_BpdokwTUWDWc8QdUM7VQP0jrjx6D0DhwE1XsHxqbjFUFIoLZl-fXlGT6NLQxWn014_VdCN0XrIKYp2t1-jDs1xXhWX4dkRgAjj8EOKtxIjGS2VmZrZbZWZmtTwuc5IcAR9Im2bvDhFv0la0Vpmm5S5IfSYvNZimMKTmvJGZH7cUhiL-5apqJWvQnKaRtPogQ3PAnkKp_N3CGOPpzuG0RrgUX9p6u5QWGI___Eq5nfp65c2zB3NicOKpFWpg9QmSqtfwNfX-Ff</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213194868</pqid></control><display><type>article</type><title>Loss Functions in Option Valuation: A Framework for Selection</title><source>RePEc</source><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Bams, Dennis ; Lehnert, Thorsten ; Wolff, Christian C. P</creator><creatorcontrib>Bams, Dennis ; Lehnert, Thorsten ; Wolff, Christian C. P</creatorcontrib><description>In this paper, we investigate the importance of different loss functions when estimating and evaluating option pricing models. Our analysis shows that it is important to take into account parameter uncertainty, because this leads to uncertainty in the predicted option price. We illustrate the effect on the out-of-sample pricing errors in an application of the ad hoc Black-Scholes model to DAX index options. We confirm the empirical results of Christoffersen and Jacobs (Christoffersen, P., K. Jacobs. 2004. The importance of the loss function in option valuation. J. Financial Econom. 72 291–318) and find strong evidence for their conjecture that the squared pricing error criterion may serve as a general-purpose loss function in option valuation applications. At the same time, we provide a first yardstick to evaluate the adequacy of the loss function. This is accomplished through a data-driven method to deliver not just a point estimate of the root mean squared pricing error, but a distribution .</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.1080.0976</identifier><identifier>CODEN: MSCIAM</identifier><language>eng</language><publisher>Hanover, MD: INFORMS</publisher><subject>Applied sciences ; Asset pricing ; Business losses ; Call options ; Decision theory. Utility theory ; Dividends ; Econometrics ; Economic models ; Estimates ; Estimation ; estimation risk ; Exact sciences and technology ; Financial engineering ; Financial instruments ; GARCH ; GARCH models ; implied volatility ; Influence ; Linear inference, regression ; loss functions ; Management science ; Market prices ; Mathematical functions ; Mathematical independent variables ; Mathematics ; Measurement ; Modeling ; Operational research and scientific management ; Operational research. Management science ; Option pricing ; Portfolio theory ; Price volatility ; Pricing ; Probability and statistics ; Sciences and techniques of general use ; Securities prices ; Selection ; Selection methods (Regression analysis) ; Statistics ; Stochastic models ; Studies ; Valuation ; Volatility</subject><ispartof>Management science, 2009-05, Vol.55 (5), p.853-862</ispartof><rights>Copyright 2009 United States of America</rights><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2009 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences May 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c654t-4f0ee4299278cf4106e1e92bf0160a51082c2ff66b5e53dd99436fbac9fbcb893</citedby><cites>FETCH-LOGICAL-c654t-4f0ee4299278cf4106e1e92bf0160a51082c2ff66b5e53dd99436fbac9fbcb893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40539193$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mnsc.1080.0976$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3683,3998,27915,27916,58008,58241,62605</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21480099$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/inmormnsc/v_3a55_3ay_3a2009_3ai_3a5_3ap_3a853-862.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Bams, Dennis</creatorcontrib><creatorcontrib>Lehnert, Thorsten</creatorcontrib><creatorcontrib>Wolff, Christian C. P</creatorcontrib><title>Loss Functions in Option Valuation: A Framework for Selection</title><title>Management science</title><description>In this paper, we investigate the importance of different loss functions when estimating and evaluating option pricing models. Our analysis shows that it is important to take into account parameter uncertainty, because this leads to uncertainty in the predicted option price. We illustrate the effect on the out-of-sample pricing errors in an application of the ad hoc Black-Scholes model to DAX index options. We confirm the empirical results of Christoffersen and Jacobs (Christoffersen, P., K. Jacobs. 2004. The importance of the loss function in option valuation. J. Financial Econom. 72 291–318) and find strong evidence for their conjecture that the squared pricing error criterion may serve as a general-purpose loss function in option valuation applications. At the same time, we provide a first yardstick to evaluate the adequacy of the loss function. This is accomplished through a data-driven method to deliver not just a point estimate of the root mean squared pricing error, but a distribution .</description><subject>Applied sciences</subject><subject>Asset pricing</subject><subject>Business losses</subject><subject>Call options</subject><subject>Decision theory. Utility theory</subject><subject>Dividends</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Estimation</subject><subject>estimation risk</subject><subject>Exact sciences and technology</subject><subject>Financial engineering</subject><subject>Financial instruments</subject><subject>GARCH</subject><subject>GARCH models</subject><subject>implied volatility</subject><subject>Influence</subject><subject>Linear inference, regression</subject><subject>loss functions</subject><subject>Management science</subject><subject>Market prices</subject><subject>Mathematical functions</subject><subject>Mathematical independent variables</subject><subject>Mathematics</subject><subject>Measurement</subject><subject>Modeling</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Option pricing</subject><subject>Portfolio theory</subject><subject>Price volatility</subject><subject>Pricing</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Securities prices</subject><subject>Selection</subject><subject>Selection methods (Regression analysis)</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Valuation</subject><subject>Volatility</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkd-rFCEUx4coaLv12lswBNVLs6kzOhr0sFzafrBwH_rxKo573HWb0U1nutz_Pr1z2SIWQo6Kfs7X4_kWxVOMlpjw9s3gol5ixNESiZbdKxaYElZRivD9YoEQoRUWSDwsHsV4QAi1vGWL4t3Gx1iuJ6dH610srSuvjnlbflf9pPLubbkq10ENcO3Dj9L4UH6BHm75x8UDo_oIT-7Wi-Lb-v3Xy4_V5urDp8vVptKMNmPVGATQECFIy7VpMGKAQZDOIMyQoqlmookxjHUUaL3dCtHUzHRKC9Ppjov6ong56x6D_zlBHOVgo4a-Vw78FGXd4qbljCbw-T_gwU_BpdokwTUWDWc8QdUM7VQP0jrjx6D0DhwE1XsHxqbjFUFIoLZl-fXlGT6NLQxWn014_VdCN0XrIKYp2t1-jDs1xXhWX4dkRgAjj8EOKtxIjGS2VmZrZbZWZmtTwuc5IcAR9Im2bvDhFv0la0Vpmm5S5IfSYvNZimMKTmvJGZH7cUhiL-5apqJWvQnKaRtPogQ3PAnkKp_N3CGOPpzuG0RrgUX9p6u5QWGI___Eq5nfp65c2zB3NicOKpFWpg9QmSqtfwNfX-Ff</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Bams, Dennis</creator><creator>Lehnert, Thorsten</creator><creator>Wolff, Christian C. P</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88G</scope><scope>8A3</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0T</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20090501</creationdate><title>Loss Functions in Option Valuation: A Framework for Selection</title><author>Bams, Dennis ; Lehnert, Thorsten ; Wolff, Christian C. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c654t-4f0ee4299278cf4106e1e92bf0160a51082c2ff66b5e53dd99436fbac9fbcb893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Asset pricing</topic><topic>Business losses</topic><topic>Call options</topic><topic>Decision theory. Utility theory</topic><topic>Dividends</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Estimation</topic><topic>estimation risk</topic><topic>Exact sciences and technology</topic><topic>Financial engineering</topic><topic>Financial instruments</topic><topic>GARCH</topic><topic>GARCH models</topic><topic>implied volatility</topic><topic>Influence</topic><topic>Linear inference, regression</topic><topic>loss functions</topic><topic>Management science</topic><topic>Market prices</topic><topic>Mathematical functions</topic><topic>Mathematical independent variables</topic><topic>Mathematics</topic><topic>Measurement</topic><topic>Modeling</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Option pricing</topic><topic>Portfolio theory</topic><topic>Price volatility</topic><topic>Pricing</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Securities prices</topic><topic>Selection</topic><topic>Selection methods (Regression analysis)</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Valuation</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bams, Dennis</creatorcontrib><creatorcontrib>Lehnert, Thorsten</creatorcontrib><creatorcontrib>Wolff, Christian C. P</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Psychology Database (Alumni)</collection><collection>Entrepreneurship Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>Psychology Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bams, Dennis</au><au>Lehnert, Thorsten</au><au>Wolff, Christian C. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss Functions in Option Valuation: A Framework for Selection</atitle><jtitle>Management science</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>55</volume><issue>5</issue><spage>853</spage><epage>862</epage><pages>853-862</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><coden>MSCIAM</coden><abstract>In this paper, we investigate the importance of different loss functions when estimating and evaluating option pricing models. Our analysis shows that it is important to take into account parameter uncertainty, because this leads to uncertainty in the predicted option price. We illustrate the effect on the out-of-sample pricing errors in an application of the ad hoc Black-Scholes model to DAX index options. We confirm the empirical results of Christoffersen and Jacobs (Christoffersen, P., K. Jacobs. 2004. The importance of the loss function in option valuation. J. Financial Econom. 72 291–318) and find strong evidence for their conjecture that the squared pricing error criterion may serve as a general-purpose loss function in option valuation applications. At the same time, we provide a first yardstick to evaluate the adequacy of the loss function. This is accomplished through a data-driven method to deliver not just a point estimate of the root mean squared pricing error, but a distribution .</abstract><cop>Hanover, MD</cop><pub>INFORMS</pub><doi>10.1287/mnsc.1080.0976</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-1909 |
ispartof | Management science, 2009-05, Vol.55 (5), p.853-862 |
issn | 0025-1909 1526-5501 |
language | eng |
recordid | cdi_gale_businessinsightsgauss_A200907769 |
source | RePEc; INFORMS PubsOnLine; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing |
subjects | Applied sciences Asset pricing Business losses Call options Decision theory. Utility theory Dividends Econometrics Economic models Estimates Estimation estimation risk Exact sciences and technology Financial engineering Financial instruments GARCH GARCH models implied volatility Influence Linear inference, regression loss functions Management science Market prices Mathematical functions Mathematical independent variables Mathematics Measurement Modeling Operational research and scientific management Operational research. Management science Option pricing Portfolio theory Price volatility Pricing Probability and statistics Sciences and techniques of general use Securities prices Selection Selection methods (Regression analysis) Statistics Stochastic models Studies Valuation Volatility |
title | Loss Functions in Option Valuation: A Framework for Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20Functions%20in%20Option%20Valuation:%20A%20Framework%20for%20Selection&rft.jtitle=Management%20science&rft.au=Bams,%20Dennis&rft.date=2009-05-01&rft.volume=55&rft.issue=5&rft.spage=853&rft.epage=862&rft.pages=853-862&rft.issn=0025-1909&rft.eissn=1526-5501&rft.coden=MSCIAM&rft_id=info:doi/10.1287/mnsc.1080.0976&rft_dat=%3Cgale_jstor%3EA200907769%3C/gale_jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213194868&rft_id=info:pmid/&rft_galeid=A200907769&rft_jstor_id=40539193&rfr_iscdi=true |