Loss Functions in Option Valuation: A Framework for Selection

In this paper, we investigate the importance of different loss functions when estimating and evaluating option pricing models. Our analysis shows that it is important to take into account parameter uncertainty, because this leads to uncertainty in the predicted option price. We illustrate the effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Management science 2009-05, Vol.55 (5), p.853-862
Hauptverfasser: Bams, Dennis, Lehnert, Thorsten, Wolff, Christian C. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 862
container_issue 5
container_start_page 853
container_title Management science
container_volume 55
creator Bams, Dennis
Lehnert, Thorsten
Wolff, Christian C. P
description In this paper, we investigate the importance of different loss functions when estimating and evaluating option pricing models. Our analysis shows that it is important to take into account parameter uncertainty, because this leads to uncertainty in the predicted option price. We illustrate the effect on the out-of-sample pricing errors in an application of the ad hoc Black-Scholes model to DAX index options. We confirm the empirical results of Christoffersen and Jacobs (Christoffersen, P., K. Jacobs. 2004. The importance of the loss function in option valuation. J. Financial Econom. 72 291–318) and find strong evidence for their conjecture that the squared pricing error criterion may serve as a general-purpose loss function in option valuation applications. At the same time, we provide a first yardstick to evaluate the adequacy of the loss function. This is accomplished through a data-driven method to deliver not just a point estimate of the root mean squared pricing error, but a distribution .
doi_str_mv 10.1287/mnsc.1080.0976
format Article
fullrecord <record><control><sourceid>gale_jstor</sourceid><recordid>TN_cdi_gale_businessinsightsgauss_A200907769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A200907769</galeid><jstor_id>40539193</jstor_id><sourcerecordid>A200907769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c654t-4f0ee4299278cf4106e1e92bf0160a51082c2ff66b5e53dd99436fbac9fbcb893</originalsourceid><addsrcrecordid>eNqFkd-rFCEUx4coaLv12lswBNVLs6kzOhr0sFzafrBwH_rxKo573HWb0U1nutz_Pr1z2SIWQo6Kfs7X4_kWxVOMlpjw9s3gol5ixNESiZbdKxaYElZRivD9YoEQoRUWSDwsHsV4QAi1vGWL4t3Gx1iuJ6dH610srSuvjnlbflf9pPLubbkq10ENcO3Dj9L4UH6BHm75x8UDo_oIT-7Wi-Lb-v3Xy4_V5urDp8vVptKMNmPVGATQECFIy7VpMGKAQZDOIMyQoqlmookxjHUUaL3dCtHUzHRKC9Ppjov6ong56x6D_zlBHOVgo4a-Vw78FGXd4qbljCbw-T_gwU_BpdokwTUWDWc8QdUM7VQP0jrjx6D0DhwE1XsHxqbjFUFIoLZl-fXlGT6NLQxWn014_VdCN0XrIKYp2t1-jDs1xXhWX4dkRgAjj8EOKtxIjGS2VmZrZbZWZmtTwuc5IcAR9Im2bvDhFv0la0Vpmm5S5IfSYvNZimMKTmvJGZH7cUhiL-5apqJWvQnKaRtPogQ3PAnkKp_N3CGOPpzuG0RrgUX9p6u5QWGI___Eq5nfp65c2zB3NicOKpFWpg9QmSqtfwNfX-Ff</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213194868</pqid></control><display><type>article</type><title>Loss Functions in Option Valuation: A Framework for Selection</title><source>RePEc</source><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Bams, Dennis ; Lehnert, Thorsten ; Wolff, Christian C. P</creator><creatorcontrib>Bams, Dennis ; Lehnert, Thorsten ; Wolff, Christian C. P</creatorcontrib><description>In this paper, we investigate the importance of different loss functions when estimating and evaluating option pricing models. Our analysis shows that it is important to take into account parameter uncertainty, because this leads to uncertainty in the predicted option price. We illustrate the effect on the out-of-sample pricing errors in an application of the ad hoc Black-Scholes model to DAX index options. We confirm the empirical results of Christoffersen and Jacobs (Christoffersen, P., K. Jacobs. 2004. The importance of the loss function in option valuation. J. Financial Econom. 72 291–318) and find strong evidence for their conjecture that the squared pricing error criterion may serve as a general-purpose loss function in option valuation applications. At the same time, we provide a first yardstick to evaluate the adequacy of the loss function. This is accomplished through a data-driven method to deliver not just a point estimate of the root mean squared pricing error, but a distribution .</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.1080.0976</identifier><identifier>CODEN: MSCIAM</identifier><language>eng</language><publisher>Hanover, MD: INFORMS</publisher><subject>Applied sciences ; Asset pricing ; Business losses ; Call options ; Decision theory. Utility theory ; Dividends ; Econometrics ; Economic models ; Estimates ; Estimation ; estimation risk ; Exact sciences and technology ; Financial engineering ; Financial instruments ; GARCH ; GARCH models ; implied volatility ; Influence ; Linear inference, regression ; loss functions ; Management science ; Market prices ; Mathematical functions ; Mathematical independent variables ; Mathematics ; Measurement ; Modeling ; Operational research and scientific management ; Operational research. Management science ; Option pricing ; Portfolio theory ; Price volatility ; Pricing ; Probability and statistics ; Sciences and techniques of general use ; Securities prices ; Selection ; Selection methods (Regression analysis) ; Statistics ; Stochastic models ; Studies ; Valuation ; Volatility</subject><ispartof>Management science, 2009-05, Vol.55 (5), p.853-862</ispartof><rights>Copyright 2009 United States of America</rights><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2009 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences May 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c654t-4f0ee4299278cf4106e1e92bf0160a51082c2ff66b5e53dd99436fbac9fbcb893</citedby><cites>FETCH-LOGICAL-c654t-4f0ee4299278cf4106e1e92bf0160a51082c2ff66b5e53dd99436fbac9fbcb893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40539193$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mnsc.1080.0976$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3683,3998,27915,27916,58008,58241,62605</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21480099$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/inmormnsc/v_3a55_3ay_3a2009_3ai_3a5_3ap_3a853-862.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Bams, Dennis</creatorcontrib><creatorcontrib>Lehnert, Thorsten</creatorcontrib><creatorcontrib>Wolff, Christian C. P</creatorcontrib><title>Loss Functions in Option Valuation: A Framework for Selection</title><title>Management science</title><description>In this paper, we investigate the importance of different loss functions when estimating and evaluating option pricing models. Our analysis shows that it is important to take into account parameter uncertainty, because this leads to uncertainty in the predicted option price. We illustrate the effect on the out-of-sample pricing errors in an application of the ad hoc Black-Scholes model to DAX index options. We confirm the empirical results of Christoffersen and Jacobs (Christoffersen, P., K. Jacobs. 2004. The importance of the loss function in option valuation. J. Financial Econom. 72 291–318) and find strong evidence for their conjecture that the squared pricing error criterion may serve as a general-purpose loss function in option valuation applications. At the same time, we provide a first yardstick to evaluate the adequacy of the loss function. This is accomplished through a data-driven method to deliver not just a point estimate of the root mean squared pricing error, but a distribution .</description><subject>Applied sciences</subject><subject>Asset pricing</subject><subject>Business losses</subject><subject>Call options</subject><subject>Decision theory. Utility theory</subject><subject>Dividends</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Estimation</subject><subject>estimation risk</subject><subject>Exact sciences and technology</subject><subject>Financial engineering</subject><subject>Financial instruments</subject><subject>GARCH</subject><subject>GARCH models</subject><subject>implied volatility</subject><subject>Influence</subject><subject>Linear inference, regression</subject><subject>loss functions</subject><subject>Management science</subject><subject>Market prices</subject><subject>Mathematical functions</subject><subject>Mathematical independent variables</subject><subject>Mathematics</subject><subject>Measurement</subject><subject>Modeling</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Option pricing</subject><subject>Portfolio theory</subject><subject>Price volatility</subject><subject>Pricing</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Securities prices</subject><subject>Selection</subject><subject>Selection methods (Regression analysis)</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Valuation</subject><subject>Volatility</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkd-rFCEUx4coaLv12lswBNVLs6kzOhr0sFzafrBwH_rxKo573HWb0U1nutz_Pr1z2SIWQo6Kfs7X4_kWxVOMlpjw9s3gol5ixNESiZbdKxaYElZRivD9YoEQoRUWSDwsHsV4QAi1vGWL4t3Gx1iuJ6dH610srSuvjnlbflf9pPLubbkq10ENcO3Dj9L4UH6BHm75x8UDo_oIT-7Wi-Lb-v3Xy4_V5urDp8vVptKMNmPVGATQECFIy7VpMGKAQZDOIMyQoqlmookxjHUUaL3dCtHUzHRKC9Ppjov6ong56x6D_zlBHOVgo4a-Vw78FGXd4qbljCbw-T_gwU_BpdokwTUWDWc8QdUM7VQP0jrjx6D0DhwE1XsHxqbjFUFIoLZl-fXlGT6NLQxWn014_VdCN0XrIKYp2t1-jDs1xXhWX4dkRgAjj8EOKtxIjGS2VmZrZbZWZmtTwuc5IcAR9Im2bvDhFv0la0Vpmm5S5IfSYvNZimMKTmvJGZH7cUhiL-5apqJWvQnKaRtPogQ3PAnkKp_N3CGOPpzuG0RrgUX9p6u5QWGI___Eq5nfp65c2zB3NicOKpFWpg9QmSqtfwNfX-Ff</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Bams, Dennis</creator><creator>Lehnert, Thorsten</creator><creator>Wolff, Christian C. P</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88G</scope><scope>8A3</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0T</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20090501</creationdate><title>Loss Functions in Option Valuation: A Framework for Selection</title><author>Bams, Dennis ; Lehnert, Thorsten ; Wolff, Christian C. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c654t-4f0ee4299278cf4106e1e92bf0160a51082c2ff66b5e53dd99436fbac9fbcb893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Asset pricing</topic><topic>Business losses</topic><topic>Call options</topic><topic>Decision theory. Utility theory</topic><topic>Dividends</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Estimation</topic><topic>estimation risk</topic><topic>Exact sciences and technology</topic><topic>Financial engineering</topic><topic>Financial instruments</topic><topic>GARCH</topic><topic>GARCH models</topic><topic>implied volatility</topic><topic>Influence</topic><topic>Linear inference, regression</topic><topic>loss functions</topic><topic>Management science</topic><topic>Market prices</topic><topic>Mathematical functions</topic><topic>Mathematical independent variables</topic><topic>Mathematics</topic><topic>Measurement</topic><topic>Modeling</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Option pricing</topic><topic>Portfolio theory</topic><topic>Price volatility</topic><topic>Pricing</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Securities prices</topic><topic>Selection</topic><topic>Selection methods (Regression analysis)</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Valuation</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bams, Dennis</creatorcontrib><creatorcontrib>Lehnert, Thorsten</creatorcontrib><creatorcontrib>Wolff, Christian C. P</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Psychology Database (Alumni)</collection><collection>Entrepreneurship Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>Psychology Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bams, Dennis</au><au>Lehnert, Thorsten</au><au>Wolff, Christian C. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss Functions in Option Valuation: A Framework for Selection</atitle><jtitle>Management science</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>55</volume><issue>5</issue><spage>853</spage><epage>862</epage><pages>853-862</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><coden>MSCIAM</coden><abstract>In this paper, we investigate the importance of different loss functions when estimating and evaluating option pricing models. Our analysis shows that it is important to take into account parameter uncertainty, because this leads to uncertainty in the predicted option price. We illustrate the effect on the out-of-sample pricing errors in an application of the ad hoc Black-Scholes model to DAX index options. We confirm the empirical results of Christoffersen and Jacobs (Christoffersen, P., K. Jacobs. 2004. The importance of the loss function in option valuation. J. Financial Econom. 72 291–318) and find strong evidence for their conjecture that the squared pricing error criterion may serve as a general-purpose loss function in option valuation applications. At the same time, we provide a first yardstick to evaluate the adequacy of the loss function. This is accomplished through a data-driven method to deliver not just a point estimate of the root mean squared pricing error, but a distribution .</abstract><cop>Hanover, MD</cop><pub>INFORMS</pub><doi>10.1287/mnsc.1080.0976</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-1909
ispartof Management science, 2009-05, Vol.55 (5), p.853-862
issn 0025-1909
1526-5501
language eng
recordid cdi_gale_businessinsightsgauss_A200907769
source RePEc; INFORMS PubsOnLine; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects Applied sciences
Asset pricing
Business losses
Call options
Decision theory. Utility theory
Dividends
Econometrics
Economic models
Estimates
Estimation
estimation risk
Exact sciences and technology
Financial engineering
Financial instruments
GARCH
GARCH models
implied volatility
Influence
Linear inference, regression
loss functions
Management science
Market prices
Mathematical functions
Mathematical independent variables
Mathematics
Measurement
Modeling
Operational research and scientific management
Operational research. Management science
Option pricing
Portfolio theory
Price volatility
Pricing
Probability and statistics
Sciences and techniques of general use
Securities prices
Selection
Selection methods (Regression analysis)
Statistics
Stochastic models
Studies
Valuation
Volatility
title Loss Functions in Option Valuation: A Framework for Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20Functions%20in%20Option%20Valuation:%20A%20Framework%20for%20Selection&rft.jtitle=Management%20science&rft.au=Bams,%20Dennis&rft.date=2009-05-01&rft.volume=55&rft.issue=5&rft.spage=853&rft.epage=862&rft.pages=853-862&rft.issn=0025-1909&rft.eissn=1526-5501&rft.coden=MSCIAM&rft_id=info:doi/10.1287/mnsc.1080.0976&rft_dat=%3Cgale_jstor%3EA200907769%3C/gale_jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213194868&rft_id=info:pmid/&rft_galeid=A200907769&rft_jstor_id=40539193&rfr_iscdi=true