Aging in Ferroelectric Si-Doped Hafnium Oxide Thin Films

The hafnium oxide (HfO2) material system offers a unique combination of outstanding physical properties, that enable a manifold of novel integrated ferroelectric, piezoelectric, and pyroelectric applications. Long-term stability is an essential concern for nonvolatile memory devices, sensors, and na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mart, C, Kohlenbach, N.-D, Kühnel, K, Eßlinger, S, Czernohorsky, M, Ali, T, Weinreich, W, Eng, L.M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Mart, C
Kohlenbach, N.-D
Kühnel, K
Eßlinger, S
Czernohorsky, M
Ali, T
Weinreich, W
Eng, L.M
description The hafnium oxide (HfO2) material system offers a unique combination of outstanding physical properties, that enable a manifold of novel integrated ferroelectric, piezoelectric, and pyroelectric applications. Long-term stability is an essential concern for nonvolatile memory devices, sensors, and nanoelectromechanical systems. Herein, the aging effects of the pyroelectric response in polycrystalline Si-doped HfO2 thin films in the field-free case are reported. It is observed that aging effects are accelerated by high temperatures, lower film thicknesses, and higher dopant concentration. The decay of the pyroelectric coefficients and the dielectric permittivity exhibits a logarithmic time dependence. The full pyroelectric response is restored by repeated electric field cycling (i.e., deaging). After the aging process, a significant internal bias field is observed. It is concluded that the migration of positively charged oxygen vacancies in the films is responsible for this aging process.
doi_str_mv 10.1002/pssr.202100023
format Article
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_636735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_636735</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_6367353</originalsourceid><addsrcrecordid>eNpjYBAzNNAzNDAw0i8oLi7SMzIwAnIMjIw5GSwc0zPz0hUy8xTcUouK8lNzUpNLijKTFYIzdV3yC1JTFDwS0_IyS3MV_CsyU1IVQjJAKjNzcot5GFjTEnOKU3mhNDeDiZtriLOHblpRYmleRn5aalF8QVFmbmJRZXx-YmY8knBKarxfvJmxmbmxqTGZ2gCQskQ2</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aging in Ferroelectric Si-Doped Hafnium Oxide Thin Films</title><source>Fraunhofer-ePrints</source><creator>Mart, C ; Kohlenbach, N.-D ; Kühnel, K ; Eßlinger, S ; Czernohorsky, M ; Ali, T ; Weinreich, W ; Eng, L.M</creator><creatorcontrib>Mart, C ; Kohlenbach, N.-D ; Kühnel, K ; Eßlinger, S ; Czernohorsky, M ; Ali, T ; Weinreich, W ; Eng, L.M</creatorcontrib><description>The hafnium oxide (HfO2) material system offers a unique combination of outstanding physical properties, that enable a manifold of novel integrated ferroelectric, piezoelectric, and pyroelectric applications. Long-term stability is an essential concern for nonvolatile memory devices, sensors, and nanoelectromechanical systems. Herein, the aging effects of the pyroelectric response in polycrystalline Si-doped HfO2 thin films in the field-free case are reported. It is observed that aging effects are accelerated by high temperatures, lower film thicknesses, and higher dopant concentration. The decay of the pyroelectric coefficients and the dielectric permittivity exhibits a logarithmic time dependence. The full pyroelectric response is restored by repeated electric field cycling (i.e., deaging). After the aging process, a significant internal bias field is observed. It is concluded that the migration of positively charged oxygen vacancies in the films is responsible for this aging process.</description><identifier>DOI: 10.1002/pssr.202100023</identifier><language>eng</language><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,776,27837</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-636735.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mart, C</creatorcontrib><creatorcontrib>Kohlenbach, N.-D</creatorcontrib><creatorcontrib>Kühnel, K</creatorcontrib><creatorcontrib>Eßlinger, S</creatorcontrib><creatorcontrib>Czernohorsky, M</creatorcontrib><creatorcontrib>Ali, T</creatorcontrib><creatorcontrib>Weinreich, W</creatorcontrib><creatorcontrib>Eng, L.M</creatorcontrib><title>Aging in Ferroelectric Si-Doped Hafnium Oxide Thin Films</title><description>The hafnium oxide (HfO2) material system offers a unique combination of outstanding physical properties, that enable a manifold of novel integrated ferroelectric, piezoelectric, and pyroelectric applications. Long-term stability is an essential concern for nonvolatile memory devices, sensors, and nanoelectromechanical systems. Herein, the aging effects of the pyroelectric response in polycrystalline Si-doped HfO2 thin films in the field-free case are reported. It is observed that aging effects are accelerated by high temperatures, lower film thicknesses, and higher dopant concentration. The decay of the pyroelectric coefficients and the dielectric permittivity exhibits a logarithmic time dependence. The full pyroelectric response is restored by repeated electric field cycling (i.e., deaging). After the aging process, a significant internal bias field is observed. It is concluded that the migration of positively charged oxygen vacancies in the films is responsible for this aging process.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNpjYBAzNNAzNDAw0i8oLi7SMzIwAnIMjIw5GSwc0zPz0hUy8xTcUouK8lNzUpNLijKTFYIzdV3yC1JTFDwS0_IyS3MV_CsyU1IVQjJAKjNzcot5GFjTEnOKU3mhNDeDiZtriLOHblpRYmleRn5aalF8QVFmbmJRZXx-YmY8knBKarxfvJmxmbmxqTGZ2gCQskQ2</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Mart, C</creator><creator>Kohlenbach, N.-D</creator><creator>Kühnel, K</creator><creator>Eßlinger, S</creator><creator>Czernohorsky, M</creator><creator>Ali, T</creator><creator>Weinreich, W</creator><creator>Eng, L.M</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2021</creationdate><title>Aging in Ferroelectric Si-Doped Hafnium Oxide Thin Films</title><author>Mart, C ; Kohlenbach, N.-D ; Kühnel, K ; Eßlinger, S ; Czernohorsky, M ; Ali, T ; Weinreich, W ; Eng, L.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_6367353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mart, C</creatorcontrib><creatorcontrib>Kohlenbach, N.-D</creatorcontrib><creatorcontrib>Kühnel, K</creatorcontrib><creatorcontrib>Eßlinger, S</creatorcontrib><creatorcontrib>Czernohorsky, M</creatorcontrib><creatorcontrib>Ali, T</creatorcontrib><creatorcontrib>Weinreich, W</creatorcontrib><creatorcontrib>Eng, L.M</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mart, C</au><au>Kohlenbach, N.-D</au><au>Kühnel, K</au><au>Eßlinger, S</au><au>Czernohorsky, M</au><au>Ali, T</au><au>Weinreich, W</au><au>Eng, L.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aging in Ferroelectric Si-Doped Hafnium Oxide Thin Films</atitle><date>2021</date><risdate>2021</risdate><abstract>The hafnium oxide (HfO2) material system offers a unique combination of outstanding physical properties, that enable a manifold of novel integrated ferroelectric, piezoelectric, and pyroelectric applications. Long-term stability is an essential concern for nonvolatile memory devices, sensors, and nanoelectromechanical systems. Herein, the aging effects of the pyroelectric response in polycrystalline Si-doped HfO2 thin films in the field-free case are reported. It is observed that aging effects are accelerated by high temperatures, lower film thicknesses, and higher dopant concentration. The decay of the pyroelectric coefficients and the dielectric permittivity exhibits a logarithmic time dependence. The full pyroelectric response is restored by repeated electric field cycling (i.e., deaging). After the aging process, a significant internal bias field is observed. It is concluded that the migration of positively charged oxygen vacancies in the films is responsible for this aging process.</abstract><doi>10.1002/pssr.202100023</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1002/pssr.202100023
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_636735
source Fraunhofer-ePrints
title Aging in Ferroelectric Si-Doped Hafnium Oxide Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aging%20in%20Ferroelectric%20Si-Doped%20Hafnium%20Oxide%20Thin%20Films&rft.au=Mart,%20C&rft.date=2021&rft_id=info:doi/10.1002/pssr.202100023&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_636735%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true