Dispensing Technology Meets CIGS Substrates: First IV-Results with Dispensed Metal Grid on CIGS Mini-Modules

For the first time, the parallel dispensing approach and the CIGS thin-film technology are combined to demonstrate metallization for thin-film PV with low temperature pastes. This article focuses on dispensing three different low temperature pastes through 35 μm and 25 μm nozzle openings, respective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gensowski, K, Jimenez, A, Tepner, S, Kuchler, M, Breitenbücher, M, Freund, T, Köder, P, Müller, J, Dimmler, B, Pospischil, M, Clement, F
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Gensowski, K
Jimenez, A
Tepner, S
Kuchler, M
Breitenbücher, M
Freund, T
Köder, P
Müller, J
Dimmler, B
Pospischil, M
Clement, F
description For the first time, the parallel dispensing approach and the CIGS thin-film technology are combined to demonstrate metallization for thin-film PV with low temperature pastes. This article focuses on dispensing three different low temperature pastes through 35 μm and 25 μm nozzle openings, respectively, and applying them on 156 mm x 156 mm CIGS substrates. The screen printed metal grid acts as reference. The achieved contact resistivity values are below 5 mcm². The metal grid on the TCO layer of CIGS substrates obtains an increased short-circuit current density of jsc = 1.1 mA∙cm-², which corresponds to 3.5% current density gain compared to grid-free CIGS modules, and an increased module power of up to 4.6%. Additionally, the Fill Factor is positively affected by the metallization. Paste C shows a promising contact finger geometry with a core finger width of wcore = 25 μm ± 1 μm and an optical aspect ratio of ARo= 0.46 ± 0.02. Following, the dispensing technology has been successfully applied on CIGS mini-modules as a future approach for realizing the metallization with a realistic perspective in terms of scalability for large module sizes.
doi_str_mv 10.4229/EUPVSEC20202020-3CO.8.5
format Conference Proceeding
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_618163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_618163</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_6181633</originalsourceid><addsrcrecordid>eNqdjL1ug0AQhK9JEdl5Bu8LgM1PLJKWYEJBbBmH9nQOi1npcmfdHop4-yDZRepoipFG3zdCrKJNmMbxy7r4PLRNkcebW4Ik34dZ-Pwo9BvxFQ2TucAJvwZjtb1MUCN6hrwqG2jGM3unPPIr7Mixh6oNjsijnokf8gPcL7CbNa80lI46sOam12QoqG03auSleOiVZny690Kku-KUvwe9U6MZbI9OXh19KzdJq0j-mTuUH3IbZdE2Sf6p_QLxIlip</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dispensing Technology Meets CIGS Substrates: First IV-Results with Dispensed Metal Grid on CIGS Mini-Modules</title><source>Fraunhofer-ePrints</source><creator>Gensowski, K ; Jimenez, A ; Tepner, S ; Kuchler, M ; Breitenbücher, M ; Freund, T ; Köder, P ; Müller, J ; Dimmler, B ; Pospischil, M ; Clement, F</creator><creatorcontrib>Gensowski, K ; Jimenez, A ; Tepner, S ; Kuchler, M ; Breitenbücher, M ; Freund, T ; Köder, P ; Müller, J ; Dimmler, B ; Pospischil, M ; Clement, F</creatorcontrib><description>For the first time, the parallel dispensing approach and the CIGS thin-film technology are combined to demonstrate metallization for thin-film PV with low temperature pastes. This article focuses on dispensing three different low temperature pastes through 35 μm and 25 μm nozzle openings, respectively, and applying them on 156 mm x 156 mm CIGS substrates. The screen printed metal grid acts as reference. The achieved contact resistivity values are below 5 mcm². The metal grid on the TCO layer of CIGS substrates obtains an increased short-circuit current density of jsc = 1.1 mA∙cm-², which corresponds to 3.5% current density gain compared to grid-free CIGS modules, and an increased module power of up to 4.6%. Additionally, the Fill Factor is positively affected by the metallization. Paste C shows a promising contact finger geometry with a core finger width of wcore = 25 μm ± 1 μm and an optical aspect ratio of ARo= 0.46 ± 0.02. Following, the dispensing technology has been successfully applied on CIGS mini-modules as a future approach for realizing the metallization with a realistic perspective in terms of scalability for large module sizes.</description><identifier>DOI: 10.4229/EUPVSEC20202020-3CO.8.5</identifier><language>eng</language><subject>Metallisierung und Strukturierung ; Photovoltaik ; Silicium-Photovoltaik</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,315,776,4036,27837</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-618163.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gensowski, K</creatorcontrib><creatorcontrib>Jimenez, A</creatorcontrib><creatorcontrib>Tepner, S</creatorcontrib><creatorcontrib>Kuchler, M</creatorcontrib><creatorcontrib>Breitenbücher, M</creatorcontrib><creatorcontrib>Freund, T</creatorcontrib><creatorcontrib>Köder, P</creatorcontrib><creatorcontrib>Müller, J</creatorcontrib><creatorcontrib>Dimmler, B</creatorcontrib><creatorcontrib>Pospischil, M</creatorcontrib><creatorcontrib>Clement, F</creatorcontrib><title>Dispensing Technology Meets CIGS Substrates: First IV-Results with Dispensed Metal Grid on CIGS Mini-Modules</title><description>For the first time, the parallel dispensing approach and the CIGS thin-film technology are combined to demonstrate metallization for thin-film PV with low temperature pastes. This article focuses on dispensing three different low temperature pastes through 35 μm and 25 μm nozzle openings, respectively, and applying them on 156 mm x 156 mm CIGS substrates. The screen printed metal grid acts as reference. The achieved contact resistivity values are below 5 mcm². The metal grid on the TCO layer of CIGS substrates obtains an increased short-circuit current density of jsc = 1.1 mA∙cm-², which corresponds to 3.5% current density gain compared to grid-free CIGS modules, and an increased module power of up to 4.6%. Additionally, the Fill Factor is positively affected by the metallization. Paste C shows a promising contact finger geometry with a core finger width of wcore = 25 μm ± 1 μm and an optical aspect ratio of ARo= 0.46 ± 0.02. Following, the dispensing technology has been successfully applied on CIGS mini-modules as a future approach for realizing the metallization with a realistic perspective in terms of scalability for large module sizes.</description><subject>Metallisierung und Strukturierung</subject><subject>Photovoltaik</subject><subject>Silicium-Photovoltaik</subject><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdjL1ug0AQhK9JEdl5Bu8LgM1PLJKWYEJBbBmH9nQOi1npcmfdHop4-yDZRepoipFG3zdCrKJNmMbxy7r4PLRNkcebW4Ik34dZ-Pwo9BvxFQ2TucAJvwZjtb1MUCN6hrwqG2jGM3unPPIr7Mixh6oNjsijnokf8gPcL7CbNa80lI46sOam12QoqG03auSleOiVZny690Kku-KUvwe9U6MZbI9OXh19KzdJq0j-mTuUH3IbZdE2Sf6p_QLxIlip</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Gensowski, K</creator><creator>Jimenez, A</creator><creator>Tepner, S</creator><creator>Kuchler, M</creator><creator>Breitenbücher, M</creator><creator>Freund, T</creator><creator>Köder, P</creator><creator>Müller, J</creator><creator>Dimmler, B</creator><creator>Pospischil, M</creator><creator>Clement, F</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2020</creationdate><title>Dispensing Technology Meets CIGS Substrates: First IV-Results with Dispensed Metal Grid on CIGS Mini-Modules</title><author>Gensowski, K ; Jimenez, A ; Tepner, S ; Kuchler, M ; Breitenbücher, M ; Freund, T ; Köder, P ; Müller, J ; Dimmler, B ; Pospischil, M ; Clement, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_6181633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Metallisierung und Strukturierung</topic><topic>Photovoltaik</topic><topic>Silicium-Photovoltaik</topic><toplevel>online_resources</toplevel><creatorcontrib>Gensowski, K</creatorcontrib><creatorcontrib>Jimenez, A</creatorcontrib><creatorcontrib>Tepner, S</creatorcontrib><creatorcontrib>Kuchler, M</creatorcontrib><creatorcontrib>Breitenbücher, M</creatorcontrib><creatorcontrib>Freund, T</creatorcontrib><creatorcontrib>Köder, P</creatorcontrib><creatorcontrib>Müller, J</creatorcontrib><creatorcontrib>Dimmler, B</creatorcontrib><creatorcontrib>Pospischil, M</creatorcontrib><creatorcontrib>Clement, F</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gensowski, K</au><au>Jimenez, A</au><au>Tepner, S</au><au>Kuchler, M</au><au>Breitenbücher, M</au><au>Freund, T</au><au>Köder, P</au><au>Müller, J</au><au>Dimmler, B</au><au>Pospischil, M</au><au>Clement, F</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dispensing Technology Meets CIGS Substrates: First IV-Results with Dispensed Metal Grid on CIGS Mini-Modules</atitle><date>2020</date><risdate>2020</risdate><abstract>For the first time, the parallel dispensing approach and the CIGS thin-film technology are combined to demonstrate metallization for thin-film PV with low temperature pastes. This article focuses on dispensing three different low temperature pastes through 35 μm and 25 μm nozzle openings, respectively, and applying them on 156 mm x 156 mm CIGS substrates. The screen printed metal grid acts as reference. The achieved contact resistivity values are below 5 mcm². The metal grid on the TCO layer of CIGS substrates obtains an increased short-circuit current density of jsc = 1.1 mA∙cm-², which corresponds to 3.5% current density gain compared to grid-free CIGS modules, and an increased module power of up to 4.6%. Additionally, the Fill Factor is positively affected by the metallization. Paste C shows a promising contact finger geometry with a core finger width of wcore = 25 μm ± 1 μm and an optical aspect ratio of ARo= 0.46 ± 0.02. Following, the dispensing technology has been successfully applied on CIGS mini-modules as a future approach for realizing the metallization with a realistic perspective in terms of scalability for large module sizes.</abstract><doi>10.4229/EUPVSEC20202020-3CO.8.5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.4229/EUPVSEC20202020-3CO.8.5
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_618163
source Fraunhofer-ePrints
subjects Metallisierung und Strukturierung
Photovoltaik
Silicium-Photovoltaik
title Dispensing Technology Meets CIGS Substrates: First IV-Results with Dispensed Metal Grid on CIGS Mini-Modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dispensing%20Technology%20Meets%20CIGS%20Substrates:%20First%20IV-Results%20with%20Dispensed%20Metal%20Grid%20on%20CIGS%20Mini-Modules&rft.au=Gensowski,%20K&rft.date=2020&rft_id=info:doi/10.4229/EUPVSEC20202020-3CO.8.5&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_618163%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true