Design rules for laser-treated icephobic metallic surfaces for aeronautic applications

Ice accretion on external aircraft surfaces due to the impact of supercooled water droplets can negatively affect the aerodynamic performance and reduce the operational capability and, therefore, must be prevented. Icephobic coatings capable of reducing the adhesion strength of ice to a surface repr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vercillo, Vittorio, Tonnicchia, Simone, Romano, Jean-Michel, Garcia-Giron, Antonio, Aguilar Morales, Alfredo Ismael, Alamri, Sabri, Dimov, Stefan S, Kunze, Tim, Lasagni, Andrés-Fabián, Bonaccurso, Elmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Vercillo, Vittorio
Tonnicchia, Simone
Romano, Jean-Michel
Garcia-Giron, Antonio
Aguilar Morales, Alfredo Ismael
Alamri, Sabri
Dimov, Stefan S
Kunze, Tim
Lasagni, Andrés-Fabián
Bonaccurso, Elmar
description Ice accretion on external aircraft surfaces due to the impact of supercooled water droplets can negatively affect the aerodynamic performance and reduce the operational capability and, therefore, must be prevented. Icephobic coatings capable of reducing the adhesion strength of ice to a surface represent a promising technology to support thermal or mechanical ice protection systems. Icephobicity is similar to hydrophobicity in several aspects and superhydrophobic surfaces embody a straightforward solution to the ice adhesion problem. Short/ultrashort pulsed laser surface treatments are proposed as a viable technology to generate superhydrophobic properties on metallic surfaces. However, it has not yet been verified whether such surfaces are generally icephobic under representative icing conditions. This study investigates the ice adhesion strength on Ti6Al4V, an alloy commonly used for aerospace components, textured by means of direct laser writing, direct laser interference patterning, and laser-induced periodic surface structures laser sources with pulse durations ranging from nano- to femtosecond regimes. A clear relation between the spatial period, the surface microstructure depth, and the ice adhesion strength under different icing conditions is investigated. From these observations, a set of design rules can be defined for superhydrophobic surfaces that are icephobic, too.
doi_str_mv 10.1002/adfm.201910268
format Article
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_582141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_582141</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5821413</originalsourceid><addsrcrecordid>eNqdiz0PwiAURVkcjLo68wdaAaupsx9xcjKu5Nk-LAkF8oDBf28HB2ene3POvYytpailEGoDvRlrJeRBCrVv5-xxwmRfnlNxmLgJxB0kpCoTQsae2w7jEJ624yNmcG4qqZCB7rsGpOCh5IlDjJOGbINPSzYz4BKuvrlgzeV8P14rQ1D8EAySjmRHoLcOYPUP7lHf9K5VspHbP28fyu9Q-g</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design rules for laser-treated icephobic metallic surfaces for aeronautic applications</title><source>Fraunhofer-ePrints</source><creator>Vercillo, Vittorio ; Tonnicchia, Simone ; Romano, Jean-Michel ; Garcia-Giron, Antonio ; Aguilar Morales, Alfredo Ismael ; Alamri, Sabri ; Dimov, Stefan S ; Kunze, Tim ; Lasagni, Andrés-Fabián ; Bonaccurso, Elmar</creator><creatorcontrib>Vercillo, Vittorio ; Tonnicchia, Simone ; Romano, Jean-Michel ; Garcia-Giron, Antonio ; Aguilar Morales, Alfredo Ismael ; Alamri, Sabri ; Dimov, Stefan S ; Kunze, Tim ; Lasagni, Andrés-Fabián ; Bonaccurso, Elmar</creatorcontrib><description>Ice accretion on external aircraft surfaces due to the impact of supercooled water droplets can negatively affect the aerodynamic performance and reduce the operational capability and, therefore, must be prevented. Icephobic coatings capable of reducing the adhesion strength of ice to a surface represent a promising technology to support thermal or mechanical ice protection systems. Icephobicity is similar to hydrophobicity in several aspects and superhydrophobic surfaces embody a straightforward solution to the ice adhesion problem. Short/ultrashort pulsed laser surface treatments are proposed as a viable technology to generate superhydrophobic properties on metallic surfaces. However, it has not yet been verified whether such surfaces are generally icephobic under representative icing conditions. This study investigates the ice adhesion strength on Ti6Al4V, an alloy commonly used for aerospace components, textured by means of direct laser writing, direct laser interference patterning, and laser-induced periodic surface structures laser sources with pulse durations ranging from nano- to femtosecond regimes. A clear relation between the spatial period, the surface microstructure depth, and the ice adhesion strength under different icing conditions is investigated. From these observations, a set of design rules can be defined for superhydrophobic surfaces that are icephobic, too.</description><identifier>DOI: 10.1002/adfm.201910268</identifier><language>eng</language><subject>Icephobic ; Icing ; laser processing ; micro ; nanopatterning ; Superhydrophobic</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>316,781,27865</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-582141.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Vercillo, Vittorio</creatorcontrib><creatorcontrib>Tonnicchia, Simone</creatorcontrib><creatorcontrib>Romano, Jean-Michel</creatorcontrib><creatorcontrib>Garcia-Giron, Antonio</creatorcontrib><creatorcontrib>Aguilar Morales, Alfredo Ismael</creatorcontrib><creatorcontrib>Alamri, Sabri</creatorcontrib><creatorcontrib>Dimov, Stefan S</creatorcontrib><creatorcontrib>Kunze, Tim</creatorcontrib><creatorcontrib>Lasagni, Andrés-Fabián</creatorcontrib><creatorcontrib>Bonaccurso, Elmar</creatorcontrib><title>Design rules for laser-treated icephobic metallic surfaces for aeronautic applications</title><description>Ice accretion on external aircraft surfaces due to the impact of supercooled water droplets can negatively affect the aerodynamic performance and reduce the operational capability and, therefore, must be prevented. Icephobic coatings capable of reducing the adhesion strength of ice to a surface represent a promising technology to support thermal or mechanical ice protection systems. Icephobicity is similar to hydrophobicity in several aspects and superhydrophobic surfaces embody a straightforward solution to the ice adhesion problem. Short/ultrashort pulsed laser surface treatments are proposed as a viable technology to generate superhydrophobic properties on metallic surfaces. However, it has not yet been verified whether such surfaces are generally icephobic under representative icing conditions. This study investigates the ice adhesion strength on Ti6Al4V, an alloy commonly used for aerospace components, textured by means of direct laser writing, direct laser interference patterning, and laser-induced periodic surface structures laser sources with pulse durations ranging from nano- to femtosecond regimes. A clear relation between the spatial period, the surface microstructure depth, and the ice adhesion strength under different icing conditions is investigated. From these observations, a set of design rules can be defined for superhydrophobic surfaces that are icephobic, too.</description><subject>Icephobic</subject><subject>Icing</subject><subject>laser processing</subject><subject>micro</subject><subject>nanopatterning</subject><subject>Superhydrophobic</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdiz0PwiAURVkcjLo68wdaAaupsx9xcjKu5Nk-LAkF8oDBf28HB2ene3POvYytpailEGoDvRlrJeRBCrVv5-xxwmRfnlNxmLgJxB0kpCoTQsae2w7jEJ624yNmcG4qqZCB7rsGpOCh5IlDjJOGbINPSzYz4BKuvrlgzeV8P14rQ1D8EAySjmRHoLcOYPUP7lHf9K5VspHbP28fyu9Q-g</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Vercillo, Vittorio</creator><creator>Tonnicchia, Simone</creator><creator>Romano, Jean-Michel</creator><creator>Garcia-Giron, Antonio</creator><creator>Aguilar Morales, Alfredo Ismael</creator><creator>Alamri, Sabri</creator><creator>Dimov, Stefan S</creator><creator>Kunze, Tim</creator><creator>Lasagni, Andrés-Fabián</creator><creator>Bonaccurso, Elmar</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2020</creationdate><title>Design rules for laser-treated icephobic metallic surfaces for aeronautic applications</title><author>Vercillo, Vittorio ; Tonnicchia, Simone ; Romano, Jean-Michel ; Garcia-Giron, Antonio ; Aguilar Morales, Alfredo Ismael ; Alamri, Sabri ; Dimov, Stefan S ; Kunze, Tim ; Lasagni, Andrés-Fabián ; Bonaccurso, Elmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5821413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Icephobic</topic><topic>Icing</topic><topic>laser processing</topic><topic>micro</topic><topic>nanopatterning</topic><topic>Superhydrophobic</topic><toplevel>online_resources</toplevel><creatorcontrib>Vercillo, Vittorio</creatorcontrib><creatorcontrib>Tonnicchia, Simone</creatorcontrib><creatorcontrib>Romano, Jean-Michel</creatorcontrib><creatorcontrib>Garcia-Giron, Antonio</creatorcontrib><creatorcontrib>Aguilar Morales, Alfredo Ismael</creatorcontrib><creatorcontrib>Alamri, Sabri</creatorcontrib><creatorcontrib>Dimov, Stefan S</creatorcontrib><creatorcontrib>Kunze, Tim</creatorcontrib><creatorcontrib>Lasagni, Andrés-Fabián</creatorcontrib><creatorcontrib>Bonaccurso, Elmar</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vercillo, Vittorio</au><au>Tonnicchia, Simone</au><au>Romano, Jean-Michel</au><au>Garcia-Giron, Antonio</au><au>Aguilar Morales, Alfredo Ismael</au><au>Alamri, Sabri</au><au>Dimov, Stefan S</au><au>Kunze, Tim</au><au>Lasagni, Andrés-Fabián</au><au>Bonaccurso, Elmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design rules for laser-treated icephobic metallic surfaces for aeronautic applications</atitle><date>2020</date><risdate>2020</risdate><abstract>Ice accretion on external aircraft surfaces due to the impact of supercooled water droplets can negatively affect the aerodynamic performance and reduce the operational capability and, therefore, must be prevented. Icephobic coatings capable of reducing the adhesion strength of ice to a surface represent a promising technology to support thermal or mechanical ice protection systems. Icephobicity is similar to hydrophobicity in several aspects and superhydrophobic surfaces embody a straightforward solution to the ice adhesion problem. Short/ultrashort pulsed laser surface treatments are proposed as a viable technology to generate superhydrophobic properties on metallic surfaces. However, it has not yet been verified whether such surfaces are generally icephobic under representative icing conditions. This study investigates the ice adhesion strength on Ti6Al4V, an alloy commonly used for aerospace components, textured by means of direct laser writing, direct laser interference patterning, and laser-induced periodic surface structures laser sources with pulse durations ranging from nano- to femtosecond regimes. A clear relation between the spatial period, the surface microstructure depth, and the ice adhesion strength under different icing conditions is investigated. From these observations, a set of design rules can be defined for superhydrophobic surfaces that are icephobic, too.</abstract><doi>10.1002/adfm.201910268</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1002/adfm.201910268
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_582141
source Fraunhofer-ePrints
subjects Icephobic
Icing
laser processing
micro
nanopatterning
Superhydrophobic
title Design rules for laser-treated icephobic metallic surfaces for aeronautic applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T10%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20rules%20for%20laser-treated%20icephobic%20metallic%20surfaces%20for%20aeronautic%20applications&rft.au=Vercillo,%20Vittorio&rft.date=2020&rft_id=info:doi/10.1002/adfm.201910268&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_582141%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true