A distributed analytics platform to execute FHIR-based phenotyping algorithms

Despite the benefits of reusing health data collected in routine care, sharing datasets outside of the organizational boundaries is not always possible due to the legal and ethical restrictions. The Personal Health Train (PHT) is a novel privacy-preserving approach to execute analytics tasks at dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karim, M.R, Nguyen, B.-P, Zimmermann, L, Kirsten, T, Löbe, M, Meineke, F, Stenzhorn, H, Kohlbacher, O, Decker, S, Beyan, O
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Karim, M.R
Nguyen, B.-P
Zimmermann, L
Kirsten, T
Löbe, M
Meineke, F
Stenzhorn, H
Kohlbacher, O
Decker, S
Beyan, O
description Despite the benefits of reusing health data collected in routine care, sharing datasets outside of the organizational boundaries is not always possible due to the legal and ethical restrictions. The Personal Health Train (PHT) is a novel privacy-preserving approach to execute analytics tasks at distributed data repositories, without sharing the data itself. In this work, we report a proof-of-concept implementation of the PHT by using FHIR data standards and Clinical Query Language (CQL). The Semantic Web and containerization technologies have been utilized to move computations to the data. We developed tools to design phenotyping algorithms on the data consumer side, implemented an infrastructure to transfer and execute Docker containers at the data centers, and to return results to the consumers. We experimented the evaluated PHT infrastructure and tools by designing a phenotyping algorithm for diabetes mellitus and prostate cancer risk case-control study and executed it at three distributed FHIR repositories.
format Conference Proceeding
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_581767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_581767</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5817673</originalsourceid><addsrcrecordid>eNqdi7sOgkAQRWksjPoP8wMUxge2xkiw0MLYbwaYhUmW3c3skMjfS2FhbXWTc85dZvcztJxUuB6VWkCPblJuEkSHaoMMoAHoTc2soaxuz7zGNIexJx90iuw7QNcFYe2HtM4WFl2izXdX2b68vi5VbgVH3wdLYqLwgDKZgGx-cEvmYQ6nbXEsdn_ePkIwSC0</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A distributed analytics platform to execute FHIR-based phenotyping algorithms</title><source>Fraunhofer-ePrints</source><creator>Karim, M.R ; Nguyen, B.-P ; Zimmermann, L ; Kirsten, T ; Löbe, M ; Meineke, F ; Stenzhorn, H ; Kohlbacher, O ; Decker, S ; Beyan, O</creator><creatorcontrib>Karim, M.R ; Nguyen, B.-P ; Zimmermann, L ; Kirsten, T ; Löbe, M ; Meineke, F ; Stenzhorn, H ; Kohlbacher, O ; Decker, S ; Beyan, O</creatorcontrib><description>Despite the benefits of reusing health data collected in routine care, sharing datasets outside of the organizational boundaries is not always possible due to the legal and ethical restrictions. The Personal Health Train (PHT) is a novel privacy-preserving approach to execute analytics tasks at distributed data repositories, without sharing the data itself. In this work, we report a proof-of-concept implementation of the PHT by using FHIR data standards and Clinical Query Language (CQL). The Semantic Web and containerization technologies have been utilized to move computations to the data. We developed tools to design phenotyping algorithms on the data consumer side, implemented an infrastructure to transfer and execute Docker containers at the data centers, and to return results to the consumers. We experimented the evaluated PHT infrastructure and tools by designing a phenotyping algorithm for diabetes mellitus and prostate cancer risk case-control study and executed it at three distributed FHIR repositories.</description><language>eng</language><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,315,780,4049,27859</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-581767.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Karim, M.R</creatorcontrib><creatorcontrib>Nguyen, B.-P</creatorcontrib><creatorcontrib>Zimmermann, L</creatorcontrib><creatorcontrib>Kirsten, T</creatorcontrib><creatorcontrib>Löbe, M</creatorcontrib><creatorcontrib>Meineke, F</creatorcontrib><creatorcontrib>Stenzhorn, H</creatorcontrib><creatorcontrib>Kohlbacher, O</creatorcontrib><creatorcontrib>Decker, S</creatorcontrib><creatorcontrib>Beyan, O</creatorcontrib><title>A distributed analytics platform to execute FHIR-based phenotyping algorithms</title><description>Despite the benefits of reusing health data collected in routine care, sharing datasets outside of the organizational boundaries is not always possible due to the legal and ethical restrictions. The Personal Health Train (PHT) is a novel privacy-preserving approach to execute analytics tasks at distributed data repositories, without sharing the data itself. In this work, we report a proof-of-concept implementation of the PHT by using FHIR data standards and Clinical Query Language (CQL). The Semantic Web and containerization technologies have been utilized to move computations to the data. We developed tools to design phenotyping algorithms on the data consumer side, implemented an infrastructure to transfer and execute Docker containers at the data centers, and to return results to the consumers. We experimented the evaluated PHT infrastructure and tools by designing a phenotyping algorithm for diabetes mellitus and prostate cancer risk case-control study and executed it at three distributed FHIR repositories.</description><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdi7sOgkAQRWksjPoP8wMUxge2xkiw0MLYbwaYhUmW3c3skMjfS2FhbXWTc85dZvcztJxUuB6VWkCPblJuEkSHaoMMoAHoTc2soaxuz7zGNIexJx90iuw7QNcFYe2HtM4WFl2izXdX2b68vi5VbgVH3wdLYqLwgDKZgGx-cEvmYQ6nbXEsdn_ePkIwSC0</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Karim, M.R</creator><creator>Nguyen, B.-P</creator><creator>Zimmermann, L</creator><creator>Kirsten, T</creator><creator>Löbe, M</creator><creator>Meineke, F</creator><creator>Stenzhorn, H</creator><creator>Kohlbacher, O</creator><creator>Decker, S</creator><creator>Beyan, O</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2018</creationdate><title>A distributed analytics platform to execute FHIR-based phenotyping algorithms</title><author>Karim, M.R ; Nguyen, B.-P ; Zimmermann, L ; Kirsten, T ; Löbe, M ; Meineke, F ; Stenzhorn, H ; Kohlbacher, O ; Decker, S ; Beyan, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5817673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Karim, M.R</creatorcontrib><creatorcontrib>Nguyen, B.-P</creatorcontrib><creatorcontrib>Zimmermann, L</creatorcontrib><creatorcontrib>Kirsten, T</creatorcontrib><creatorcontrib>Löbe, M</creatorcontrib><creatorcontrib>Meineke, F</creatorcontrib><creatorcontrib>Stenzhorn, H</creatorcontrib><creatorcontrib>Kohlbacher, O</creatorcontrib><creatorcontrib>Decker, S</creatorcontrib><creatorcontrib>Beyan, O</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karim, M.R</au><au>Nguyen, B.-P</au><au>Zimmermann, L</au><au>Kirsten, T</au><au>Löbe, M</au><au>Meineke, F</au><au>Stenzhorn, H</au><au>Kohlbacher, O</au><au>Decker, S</au><au>Beyan, O</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A distributed analytics platform to execute FHIR-based phenotyping algorithms</atitle><date>2018</date><risdate>2018</risdate><abstract>Despite the benefits of reusing health data collected in routine care, sharing datasets outside of the organizational boundaries is not always possible due to the legal and ethical restrictions. The Personal Health Train (PHT) is a novel privacy-preserving approach to execute analytics tasks at distributed data repositories, without sharing the data itself. In this work, we report a proof-of-concept implementation of the PHT by using FHIR data standards and Clinical Query Language (CQL). The Semantic Web and containerization technologies have been utilized to move computations to the data. We developed tools to design phenotyping algorithms on the data consumer side, implemented an infrastructure to transfer and execute Docker containers at the data centers, and to return results to the consumers. We experimented the evaluated PHT infrastructure and tools by designing a phenotyping algorithm for diabetes mellitus and prostate cancer risk case-control study and executed it at three distributed FHIR repositories.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_581767
source Fraunhofer-ePrints
title A distributed analytics platform to execute FHIR-based phenotyping algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20distributed%20analytics%20platform%20to%20execute%20FHIR-based%20phenotyping%20algorithms&rft.au=Karim,%20M.R&rft.date=2018&rft_id=info:doi/&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_581767%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true