Dielectric metasurfaces for distance measurements and three-dimensional imaging

Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation. This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical properties or functionalities. We demonstrate that such metasurfaces can also be appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jin, C, Afsharnia, M, Berlich, R, Fasold, S, Zou, C, Arslan, D, Staude, I, Pertsch, T, Setzpfandt, F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Jin, C
Afsharnia, M
Berlich, R
Fasold, S
Zou, C
Arslan, D
Staude, I
Pertsch, T
Setzpfandt, F
description Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation. This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical properties or functionalities. We demonstrate that such metasurfaces can also be applied for single-lens three-dimensional (3-D) imaging based on a specifically engineered point-spread function (PSF). Using Huygens’ metasurfaces with high transmission, we design and realize a phase mask that implements a rotating PSF for 3-D imaging. We experimentally characterize the properties of the realized double-helix PSF, finding that it can uniquely encode object distances within a wide range. Furthermore, we experimentally demonstrate wide-field depth retrieval within a 3-D scene, showing the suitability of metasurfaces to realize optics for 3-D imaging, using just a single camera and lens system.
doi_str_mv 10.1117/1.AP.1.3.036001
format Article
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_578348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_578348</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5783483</originalsourceid><addsrcrecordid>eNqdi70OwiAURlkcjDq78gJFSKvtavyJkzq4kxu4tDdpwQAdfHtr4uDs9CXnnI-xtZJCKVVvlNjfhRKlkOVOSjVntyNhjyZHMnzADGmMDgwm7kLkllIGb3AyH4ED-pw4eMtzFxELSxNJFDz0nAZoybdLNnPQJ1x9d8Gq8-lxuBQuwui74DDqZ5zi-NIBSP9gi_qqt3VTVk355-0NPlROGg</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dielectric metasurfaces for distance measurements and three-dimensional imaging</title><source>Fraunhofer-ePrints</source><creator>Jin, C ; Afsharnia, M ; Berlich, R ; Fasold, S ; Zou, C ; Arslan, D ; Staude, I ; Pertsch, T ; Setzpfandt, F</creator><creatorcontrib>Jin, C ; Afsharnia, M ; Berlich, R ; Fasold, S ; Zou, C ; Arslan, D ; Staude, I ; Pertsch, T ; Setzpfandt, F</creatorcontrib><description>Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation. This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical properties or functionalities. We demonstrate that such metasurfaces can also be applied for single-lens three-dimensional (3-D) imaging based on a specifically engineered point-spread function (PSF). Using Huygens’ metasurfaces with high transmission, we design and realize a phase mask that implements a rotating PSF for 3-D imaging. We experimentally characterize the properties of the realized double-helix PSF, finding that it can uniquely encode object distances within a wide range. Furthermore, we experimentally demonstrate wide-field depth retrieval within a 3-D scene, showing the suitability of metasurfaces to realize optics for 3-D imaging, using just a single camera and lens system.</description><identifier>DOI: 10.1117/1.AP.1.3.036001</identifier><language>eng</language><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,780,27860</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-578348.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jin, C</creatorcontrib><creatorcontrib>Afsharnia, M</creatorcontrib><creatorcontrib>Berlich, R</creatorcontrib><creatorcontrib>Fasold, S</creatorcontrib><creatorcontrib>Zou, C</creatorcontrib><creatorcontrib>Arslan, D</creatorcontrib><creatorcontrib>Staude, I</creatorcontrib><creatorcontrib>Pertsch, T</creatorcontrib><creatorcontrib>Setzpfandt, F</creatorcontrib><title>Dielectric metasurfaces for distance measurements and three-dimensional imaging</title><description>Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation. This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical properties or functionalities. We demonstrate that such metasurfaces can also be applied for single-lens three-dimensional (3-D) imaging based on a specifically engineered point-spread function (PSF). Using Huygens’ metasurfaces with high transmission, we design and realize a phase mask that implements a rotating PSF for 3-D imaging. We experimentally characterize the properties of the realized double-helix PSF, finding that it can uniquely encode object distances within a wide range. Furthermore, we experimentally demonstrate wide-field depth retrieval within a 3-D scene, showing the suitability of metasurfaces to realize optics for 3-D imaging, using just a single camera and lens system.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdi70OwiAURlkcjDq78gJFSKvtavyJkzq4kxu4tDdpwQAdfHtr4uDs9CXnnI-xtZJCKVVvlNjfhRKlkOVOSjVntyNhjyZHMnzADGmMDgwm7kLkllIGb3AyH4ED-pw4eMtzFxELSxNJFDz0nAZoybdLNnPQJ1x9d8Gq8-lxuBQuwui74DDqZ5zi-NIBSP9gi_qqt3VTVk355-0NPlROGg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Jin, C</creator><creator>Afsharnia, M</creator><creator>Berlich, R</creator><creator>Fasold, S</creator><creator>Zou, C</creator><creator>Arslan, D</creator><creator>Staude, I</creator><creator>Pertsch, T</creator><creator>Setzpfandt, F</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2019</creationdate><title>Dielectric metasurfaces for distance measurements and three-dimensional imaging</title><author>Jin, C ; Afsharnia, M ; Berlich, R ; Fasold, S ; Zou, C ; Arslan, D ; Staude, I ; Pertsch, T ; Setzpfandt, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5783483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Jin, C</creatorcontrib><creatorcontrib>Afsharnia, M</creatorcontrib><creatorcontrib>Berlich, R</creatorcontrib><creatorcontrib>Fasold, S</creatorcontrib><creatorcontrib>Zou, C</creatorcontrib><creatorcontrib>Arslan, D</creatorcontrib><creatorcontrib>Staude, I</creatorcontrib><creatorcontrib>Pertsch, T</creatorcontrib><creatorcontrib>Setzpfandt, F</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, C</au><au>Afsharnia, M</au><au>Berlich, R</au><au>Fasold, S</au><au>Zou, C</au><au>Arslan, D</au><au>Staude, I</au><au>Pertsch, T</au><au>Setzpfandt, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric metasurfaces for distance measurements and three-dimensional imaging</atitle><date>2019</date><risdate>2019</risdate><abstract>Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation. This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical properties or functionalities. We demonstrate that such metasurfaces can also be applied for single-lens three-dimensional (3-D) imaging based on a specifically engineered point-spread function (PSF). Using Huygens’ metasurfaces with high transmission, we design and realize a phase mask that implements a rotating PSF for 3-D imaging. We experimentally characterize the properties of the realized double-helix PSF, finding that it can uniquely encode object distances within a wide range. Furthermore, we experimentally demonstrate wide-field depth retrieval within a 3-D scene, showing the suitability of metasurfaces to realize optics for 3-D imaging, using just a single camera and lens system.</abstract><doi>10.1117/1.AP.1.3.036001</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1117/1.AP.1.3.036001
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_578348
source Fraunhofer-ePrints
title Dielectric metasurfaces for distance measurements and three-dimensional imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20metasurfaces%20for%20distance%20measurements%20and%20three-dimensional%20imaging&rft.au=Jin,%20C&rft.date=2019&rft_id=info:doi/10.1117/1.AP.1.3.036001&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_578348%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true