Dielectric metasurfaces for distance measurements and three-dimensional imaging
Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation. This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical properties or functionalities. We demonstrate that such metasurfaces can also be appl...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Jin, C Afsharnia, M Berlich, R Fasold, S Zou, C Arslan, D Staude, I Pertsch, T Setzpfandt, F |
description | Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation. This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical properties or functionalities. We demonstrate that such metasurfaces can also be applied for single-lens three-dimensional (3-D) imaging based on a specifically engineered point-spread function (PSF). Using Huygens’ metasurfaces with high transmission, we design and realize a phase mask that implements a rotating PSF for 3-D imaging. We experimentally characterize the properties of the realized double-helix PSF, finding that it can uniquely encode object distances within a wide range. Furthermore, we experimentally demonstrate wide-field depth retrieval within a 3-D scene, showing the suitability of metasurfaces to realize optics for 3-D imaging, using just a single camera and lens system. |
doi_str_mv | 10.1117/1.AP.1.3.036001 |
format | Article |
fullrecord | <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_578348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_578348</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5783483</originalsourceid><addsrcrecordid>eNqdi70OwiAURlkcjDq78gJFSKvtavyJkzq4kxu4tDdpwQAdfHtr4uDs9CXnnI-xtZJCKVVvlNjfhRKlkOVOSjVntyNhjyZHMnzADGmMDgwm7kLkllIGb3AyH4ED-pw4eMtzFxELSxNJFDz0nAZoybdLNnPQJ1x9d8Gq8-lxuBQuwui74DDqZ5zi-NIBSP9gi_qqt3VTVk355-0NPlROGg</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dielectric metasurfaces for distance measurements and three-dimensional imaging</title><source>Fraunhofer-ePrints</source><creator>Jin, C ; Afsharnia, M ; Berlich, R ; Fasold, S ; Zou, C ; Arslan, D ; Staude, I ; Pertsch, T ; Setzpfandt, F</creator><creatorcontrib>Jin, C ; Afsharnia, M ; Berlich, R ; Fasold, S ; Zou, C ; Arslan, D ; Staude, I ; Pertsch, T ; Setzpfandt, F</creatorcontrib><description>Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation. This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical properties or functionalities. We demonstrate that such metasurfaces can also be applied for single-lens three-dimensional (3-D) imaging based on a specifically engineered point-spread function (PSF). Using Huygens’ metasurfaces with high transmission, we design and realize a phase mask that implements a rotating PSF for 3-D imaging. We experimentally characterize the properties of the realized double-helix PSF, finding that it can uniquely encode object distances within a wide range. Furthermore, we experimentally demonstrate wide-field depth retrieval within a 3-D scene, showing the suitability of metasurfaces to realize optics for 3-D imaging, using just a single camera and lens system.</description><identifier>DOI: 10.1117/1.AP.1.3.036001</identifier><language>eng</language><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,780,27860</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-578348.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jin, C</creatorcontrib><creatorcontrib>Afsharnia, M</creatorcontrib><creatorcontrib>Berlich, R</creatorcontrib><creatorcontrib>Fasold, S</creatorcontrib><creatorcontrib>Zou, C</creatorcontrib><creatorcontrib>Arslan, D</creatorcontrib><creatorcontrib>Staude, I</creatorcontrib><creatorcontrib>Pertsch, T</creatorcontrib><creatorcontrib>Setzpfandt, F</creatorcontrib><title>Dielectric metasurfaces for distance measurements and three-dimensional imaging</title><description>Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation. This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical properties or functionalities. We demonstrate that such metasurfaces can also be applied for single-lens three-dimensional (3-D) imaging based on a specifically engineered point-spread function (PSF). Using Huygens’ metasurfaces with high transmission, we design and realize a phase mask that implements a rotating PSF for 3-D imaging. We experimentally characterize the properties of the realized double-helix PSF, finding that it can uniquely encode object distances within a wide range. Furthermore, we experimentally demonstrate wide-field depth retrieval within a 3-D scene, showing the suitability of metasurfaces to realize optics for 3-D imaging, using just a single camera and lens system.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdi70OwiAURlkcjDq78gJFSKvtavyJkzq4kxu4tDdpwQAdfHtr4uDs9CXnnI-xtZJCKVVvlNjfhRKlkOVOSjVntyNhjyZHMnzADGmMDgwm7kLkllIGb3AyH4ED-pw4eMtzFxELSxNJFDz0nAZoybdLNnPQJ1x9d8Gq8-lxuBQuwui74DDqZ5zi-NIBSP9gi_qqt3VTVk355-0NPlROGg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Jin, C</creator><creator>Afsharnia, M</creator><creator>Berlich, R</creator><creator>Fasold, S</creator><creator>Zou, C</creator><creator>Arslan, D</creator><creator>Staude, I</creator><creator>Pertsch, T</creator><creator>Setzpfandt, F</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2019</creationdate><title>Dielectric metasurfaces for distance measurements and three-dimensional imaging</title><author>Jin, C ; Afsharnia, M ; Berlich, R ; Fasold, S ; Zou, C ; Arslan, D ; Staude, I ; Pertsch, T ; Setzpfandt, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5783483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Jin, C</creatorcontrib><creatorcontrib>Afsharnia, M</creatorcontrib><creatorcontrib>Berlich, R</creatorcontrib><creatorcontrib>Fasold, S</creatorcontrib><creatorcontrib>Zou, C</creatorcontrib><creatorcontrib>Arslan, D</creatorcontrib><creatorcontrib>Staude, I</creatorcontrib><creatorcontrib>Pertsch, T</creatorcontrib><creatorcontrib>Setzpfandt, F</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, C</au><au>Afsharnia, M</au><au>Berlich, R</au><au>Fasold, S</au><au>Zou, C</au><au>Arslan, D</au><au>Staude, I</au><au>Pertsch, T</au><au>Setzpfandt, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric metasurfaces for distance measurements and three-dimensional imaging</atitle><date>2019</date><risdate>2019</risdate><abstract>Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation. This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical properties or functionalities. We demonstrate that such metasurfaces can also be applied for single-lens three-dimensional (3-D) imaging based on a specifically engineered point-spread function (PSF). Using Huygens’ metasurfaces with high transmission, we design and realize a phase mask that implements a rotating PSF for 3-D imaging. We experimentally characterize the properties of the realized double-helix PSF, finding that it can uniquely encode object distances within a wide range. Furthermore, we experimentally demonstrate wide-field depth retrieval within a 3-D scene, showing the suitability of metasurfaces to realize optics for 3-D imaging, using just a single camera and lens system.</abstract><doi>10.1117/1.AP.1.3.036001</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.1117/1.AP.1.3.036001 |
ispartof | |
issn | |
language | eng |
recordid | cdi_fraunhofer_primary_oai_fraunhofer_de_N_578348 |
source | Fraunhofer-ePrints |
title | Dielectric metasurfaces for distance measurements and three-dimensional imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20metasurfaces%20for%20distance%20measurements%20and%20three-dimensional%20imaging&rft.au=Jin,%20C&rft.date=2019&rft_id=info:doi/10.1117/1.AP.1.3.036001&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_578348%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |