Edge Recombination Analysis of Silicon Solar Cells Using Photoluminescence Measurements

Edge losses in silicon solar cells are becoming more important in current photovoltaic research, especially in shingled cell modules with high perimeter to area ratios. Hence, in this study a new approach is presented to quantify edge recombination losses by using photoluminescence (PL) measurements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stolzenburg, H, Fell, A, Schindler, F, Kwapil, W, Richter, A, Baliozan, P, Schubert, M.C
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Stolzenburg, H
Fell, A
Schindler, F
Kwapil, W
Richter, A
Baliozan, P
Schubert, M.C
description Edge losses in silicon solar cells are becoming more important in current photovoltaic research, especially in shingled cell modules with high perimeter to area ratios. Hence, in this study a new approach is presented to quantify edge recombination losses by using photoluminescence (PL) measurements combined with device modelling. The main focus of this work is to determine and separate the contribution of the two relevant edge recombination losses: (i) recombination at the bulk edge, described by an effective surface recombination velocity Seff,edge, and (ii) recombination at the pn-junction edge, described by an edge-length specific non-ideal recombination parameter J02,edge. For this purpose, the PL gradient towards the edge at different illumination intensities is fitted by Quokka3 simulations. The developed method is applied for differently separated unpassivated edges, namely by thermal laser separation (TLS) and by mechanical cleaving. Additionally, an emitter window for the TLS edge is introduced where no pn-junction at the edge is present. It was found that the emitter window results in less edge recombination while having the same bulk-edge recombination properties as without. As a result, J02,edge = 3 nA/cm and Seff,edge = 105 cm/s are determined for the TLS edge without emitter window while the mechanically cleaved edge showed higher edge recombination.
doi_str_mv 10.1063/1.5123822
format Conference Proceeding
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_578191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_578191</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5781913</originalsourceid><addsrcrecordid>eNqdy70KwjAUQOEsDqIOvkFewNq0VusopeKiiD84htjetBeSG0naoW-vg4Oz04EPDmNzEUciXqdLEWUiSfMkGbNHWTfAL1A5-0RSHTriO1JmCBi40_yKBquPXZ1RnhdgTOD3gNTwc-s6Z3qLBKECqoAfQYXegwXqwpSNtDIBZt9O2Gpf3orDQnvVU-s0ePnyaJUfpFMof7gGeZLZJhdbkf65vQEm0k8m</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Edge Recombination Analysis of Silicon Solar Cells Using Photoluminescence Measurements</title><source>Fraunhofer-ePrints</source><creator>Stolzenburg, H ; Fell, A ; Schindler, F ; Kwapil, W ; Richter, A ; Baliozan, P ; Schubert, M.C</creator><creatorcontrib>Stolzenburg, H ; Fell, A ; Schindler, F ; Kwapil, W ; Richter, A ; Baliozan, P ; Schubert, M.C</creatorcontrib><description>Edge losses in silicon solar cells are becoming more important in current photovoltaic research, especially in shingled cell modules with high perimeter to area ratios. Hence, in this study a new approach is presented to quantify edge recombination losses by using photoluminescence (PL) measurements combined with device modelling. The main focus of this work is to determine and separate the contribution of the two relevant edge recombination losses: (i) recombination at the bulk edge, described by an effective surface recombination velocity Seff,edge, and (ii) recombination at the pn-junction edge, described by an edge-length specific non-ideal recombination parameter J02,edge. For this purpose, the PL gradient towards the edge at different illumination intensities is fitted by Quokka3 simulations. The developed method is applied for differently separated unpassivated edges, namely by thermal laser separation (TLS) and by mechanical cleaving. Additionally, an emitter window for the TLS edge is introduced where no pn-junction at the edge is present. It was found that the emitter window results in less edge recombination while having the same bulk-edge recombination properties as without. As a result, J02,edge = 3 nA/cm and Seff,edge = 105 cm/s are determined for the TLS edge without emitter window while the mechanically cleaved edge showed higher edge recombination.</description><identifier>DOI: 10.1063/1.5123822</identifier><language>eng</language><subject>Charakterisierung von Prozess- und Silicium-Materialien ; Photovoltaik ; Silicium-Photovoltaik</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,315,776,4036,27839</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-578191.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Stolzenburg, H</creatorcontrib><creatorcontrib>Fell, A</creatorcontrib><creatorcontrib>Schindler, F</creatorcontrib><creatorcontrib>Kwapil, W</creatorcontrib><creatorcontrib>Richter, A</creatorcontrib><creatorcontrib>Baliozan, P</creatorcontrib><creatorcontrib>Schubert, M.C</creatorcontrib><title>Edge Recombination Analysis of Silicon Solar Cells Using Photoluminescence Measurements</title><description>Edge losses in silicon solar cells are becoming more important in current photovoltaic research, especially in shingled cell modules with high perimeter to area ratios. Hence, in this study a new approach is presented to quantify edge recombination losses by using photoluminescence (PL) measurements combined with device modelling. The main focus of this work is to determine and separate the contribution of the two relevant edge recombination losses: (i) recombination at the bulk edge, described by an effective surface recombination velocity Seff,edge, and (ii) recombination at the pn-junction edge, described by an edge-length specific non-ideal recombination parameter J02,edge. For this purpose, the PL gradient towards the edge at different illumination intensities is fitted by Quokka3 simulations. The developed method is applied for differently separated unpassivated edges, namely by thermal laser separation (TLS) and by mechanical cleaving. Additionally, an emitter window for the TLS edge is introduced where no pn-junction at the edge is present. It was found that the emitter window results in less edge recombination while having the same bulk-edge recombination properties as without. As a result, J02,edge = 3 nA/cm and Seff,edge = 105 cm/s are determined for the TLS edge without emitter window while the mechanically cleaved edge showed higher edge recombination.</description><subject>Charakterisierung von Prozess- und Silicium-Materialien</subject><subject>Photovoltaik</subject><subject>Silicium-Photovoltaik</subject><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdy70KwjAUQOEsDqIOvkFewNq0VusopeKiiD84htjetBeSG0naoW-vg4Oz04EPDmNzEUciXqdLEWUiSfMkGbNHWTfAL1A5-0RSHTriO1JmCBi40_yKBquPXZ1RnhdgTOD3gNTwc-s6Z3qLBKECqoAfQYXegwXqwpSNtDIBZt9O2Gpf3orDQnvVU-s0ePnyaJUfpFMof7gGeZLZJhdbkf65vQEm0k8m</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Stolzenburg, H</creator><creator>Fell, A</creator><creator>Schindler, F</creator><creator>Kwapil, W</creator><creator>Richter, A</creator><creator>Baliozan, P</creator><creator>Schubert, M.C</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2019</creationdate><title>Edge Recombination Analysis of Silicon Solar Cells Using Photoluminescence Measurements</title><author>Stolzenburg, H ; Fell, A ; Schindler, F ; Kwapil, W ; Richter, A ; Baliozan, P ; Schubert, M.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5781913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charakterisierung von Prozess- und Silicium-Materialien</topic><topic>Photovoltaik</topic><topic>Silicium-Photovoltaik</topic><toplevel>online_resources</toplevel><creatorcontrib>Stolzenburg, H</creatorcontrib><creatorcontrib>Fell, A</creatorcontrib><creatorcontrib>Schindler, F</creatorcontrib><creatorcontrib>Kwapil, W</creatorcontrib><creatorcontrib>Richter, A</creatorcontrib><creatorcontrib>Baliozan, P</creatorcontrib><creatorcontrib>Schubert, M.C</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stolzenburg, H</au><au>Fell, A</au><au>Schindler, F</au><au>Kwapil, W</au><au>Richter, A</au><au>Baliozan, P</au><au>Schubert, M.C</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Edge Recombination Analysis of Silicon Solar Cells Using Photoluminescence Measurements</atitle><date>2019</date><risdate>2019</risdate><abstract>Edge losses in silicon solar cells are becoming more important in current photovoltaic research, especially in shingled cell modules with high perimeter to area ratios. Hence, in this study a new approach is presented to quantify edge recombination losses by using photoluminescence (PL) measurements combined with device modelling. The main focus of this work is to determine and separate the contribution of the two relevant edge recombination losses: (i) recombination at the bulk edge, described by an effective surface recombination velocity Seff,edge, and (ii) recombination at the pn-junction edge, described by an edge-length specific non-ideal recombination parameter J02,edge. For this purpose, the PL gradient towards the edge at different illumination intensities is fitted by Quokka3 simulations. The developed method is applied for differently separated unpassivated edges, namely by thermal laser separation (TLS) and by mechanical cleaving. Additionally, an emitter window for the TLS edge is introduced where no pn-junction at the edge is present. It was found that the emitter window results in less edge recombination while having the same bulk-edge recombination properties as without. As a result, J02,edge = 3 nA/cm and Seff,edge = 105 cm/s are determined for the TLS edge without emitter window while the mechanically cleaved edge showed higher edge recombination.</abstract><doi>10.1063/1.5123822</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1063/1.5123822
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_578191
source Fraunhofer-ePrints
subjects Charakterisierung von Prozess- und Silicium-Materialien
Photovoltaik
Silicium-Photovoltaik
title Edge Recombination Analysis of Silicon Solar Cells Using Photoluminescence Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Edge%20Recombination%20Analysis%20of%20Silicon%20Solar%20Cells%20Using%20Photoluminescence%20Measurements&rft.au=Stolzenburg,%20H&rft.date=2019&rft_id=info:doi/10.1063/1.5123822&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_578191%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true