Applying Heuristic and Machine Learning Strategies to Product Resolution

In order to analyze product data obtained from different web shops a process is needed to determine which product descriptions refer to the same product (product resolution). Based on string similarity metrics and existing product resolution approaches a new approach is presented with the following...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Strauß, Oliver, Almheidat, Ahmad, Kett, Holger
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Strauß, Oliver
Almheidat, Ahmad
Kett, Holger
description In order to analyze product data obtained from different web shops a process is needed to determine which product descriptions refer to the same product (product resolution). Based on string similarity metrics and existing product resolution approaches a new approach is presented with the following components: a) extraction of information from the unstructured product title extracted from the e-shops, b) inclusion of additional information in the matching process, c) a method to compute a product similarity metric from the available data, d) optimization and adaption of model parameters to the characteristics of the underlying data via a genetic algorithm and e) a framework to automatically evaluate the matching method on the basis of realistic test data. The approach achieved a precision of 0.946 and a recall of 0.673.
doi_str_mv 10.5220/0008069402420249
format Conference Proceeding
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_565067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_565067</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5650673</originalsourceid><addsrcrecordid>eNqdi7EKwjAURbM4iLo75gfUGNtqRxGlg4qoe3i0r-2DmpSXZPDvVXBwdrgcOIcrxHSp5qnWaqGU2qgsT5RO9Hv5UBTbvu-eZBtZYGTygUoJtpInKFuyKI8IbD_5FhgCNoReBicv7KpYBnlF77oYyNmxGNTQeZx8ORLJYX_fFbOaIdrW1cimZ3oAP40DMj-6QnM2aZaqbL368_YCq6pK4w</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applying Heuristic and Machine Learning Strategies to Product Resolution</title><source>Fraunhofer-ePrints</source><creator>Strauß, Oliver ; Almheidat, Ahmad ; Kett, Holger</creator><creatorcontrib>Strauß, Oliver ; Almheidat, Ahmad ; Kett, Holger</creatorcontrib><description>In order to analyze product data obtained from different web shops a process is needed to determine which product descriptions refer to the same product (product resolution). Based on string similarity metrics and existing product resolution approaches a new approach is presented with the following components: a) extraction of information from the unstructured product title extracted from the e-shops, b) inclusion of additional information in the matching process, c) a method to compute a product similarity metric from the available data, d) optimization and adaption of model parameters to the characteristics of the underlying data via a genetic algorithm and e) a framework to automatically evaluate the matching method on the basis of realistic test data. The approach achieved a precision of 0.946 and a recall of 0.673.</description><identifier>DOI: 10.5220/0008069402420249</identifier><language>eng</language><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,315,780,4048,27859</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-565067.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Strauß, Oliver</creatorcontrib><creatorcontrib>Almheidat, Ahmad</creatorcontrib><creatorcontrib>Kett, Holger</creatorcontrib><title>Applying Heuristic and Machine Learning Strategies to Product Resolution</title><description>In order to analyze product data obtained from different web shops a process is needed to determine which product descriptions refer to the same product (product resolution). Based on string similarity metrics and existing product resolution approaches a new approach is presented with the following components: a) extraction of information from the unstructured product title extracted from the e-shops, b) inclusion of additional information in the matching process, c) a method to compute a product similarity metric from the available data, d) optimization and adaption of model parameters to the characteristics of the underlying data via a genetic algorithm and e) a framework to automatically evaluate the matching method on the basis of realistic test data. The approach achieved a precision of 0.946 and a recall of 0.673.</description><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdi7EKwjAURbM4iLo75gfUGNtqRxGlg4qoe3i0r-2DmpSXZPDvVXBwdrgcOIcrxHSp5qnWaqGU2qgsT5RO9Hv5UBTbvu-eZBtZYGTygUoJtpInKFuyKI8IbD_5FhgCNoReBicv7KpYBnlF77oYyNmxGNTQeZx8ORLJYX_fFbOaIdrW1cimZ3oAP40DMj-6QnM2aZaqbL368_YCq6pK4w</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Strauß, Oliver</creator><creator>Almheidat, Ahmad</creator><creator>Kett, Holger</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2019</creationdate><title>Applying Heuristic and Machine Learning Strategies to Product Resolution</title><author>Strauß, Oliver ; Almheidat, Ahmad ; Kett, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5650673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Strauß, Oliver</creatorcontrib><creatorcontrib>Almheidat, Ahmad</creatorcontrib><creatorcontrib>Kett, Holger</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Strauß, Oliver</au><au>Almheidat, Ahmad</au><au>Kett, Holger</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying Heuristic and Machine Learning Strategies to Product Resolution</atitle><date>2019</date><risdate>2019</risdate><abstract>In order to analyze product data obtained from different web shops a process is needed to determine which product descriptions refer to the same product (product resolution). Based on string similarity metrics and existing product resolution approaches a new approach is presented with the following components: a) extraction of information from the unstructured product title extracted from the e-shops, b) inclusion of additional information in the matching process, c) a method to compute a product similarity metric from the available data, d) optimization and adaption of model parameters to the characteristics of the underlying data via a genetic algorithm and e) a framework to automatically evaluate the matching method on the basis of realistic test data. The approach achieved a precision of 0.946 and a recall of 0.673.</abstract><doi>10.5220/0008069402420249</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5220/0008069402420249
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_565067
source Fraunhofer-ePrints
title Applying Heuristic and Machine Learning Strategies to Product Resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20Heuristic%20and%20Machine%20Learning%20Strategies%20to%20Product%20Resolution&rft.au=Strau%C3%9F,%20Oliver&rft.date=2019&rft_id=info:doi/10.5220/0008069402420249&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_565067%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true