Parameter Estimation Strategies in Thermodynamics
Many thermodynamic models used in practice are at least partially empirical and thus require the determination of certain parameters using experimental data. However, due to the complexity of the models involved as well as the inhomogeneity of available data, a straightforward application of basic m...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Höller, Johannes Bickert, Patricia Schwartz, Patrick Kurnatowski, Martin von Kerber, Joachim Künzle, Niklaus Lorenz, Hilke-Marie Asprion, Norbert Blagov, Sergej Bortz, Michael |
description | Many thermodynamic models used in practice are at least partially empirical and thus require the determination of certain parameters using experimental data. However, due to the complexity of the models involved as well as the inhomogeneity of available data, a straightforward application of basic methods often does not yield a satisfactory result. This work compares three different strategies for the numerical solution of parameter estimation problems, including errors both in the input and in the output variables. Additionally, the new idea to apply multi-criteria optimization techniques to parameter estimation problems is presented. Finally, strategies for the estimation and propagation of the model errors are discussed. |
doi_str_mv | 10.3390/chemengineering3020056 |
format | Article |
fullrecord | <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_559395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_559395</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5593953</originalsourceid><addsrcrecordid>eNqdjLEKwjAQQLM4iPoLkh9QU2OEzlJxEsHu4Wgv7YG5yCUO_XsdHJydHjx4T6l1ZbbW1mbXjRiRB2JEIR6s2RvjjnNV3UAgYkHRTS4UoVBifS8CBQfCrIl1O6LE1E8Mkbq8VLMAj4yrLxfqcG7a02UTBF48poDin_I5yeQTkP_RPfqrd662tbN_Zm-D50cU</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parameter Estimation Strategies in Thermodynamics</title><source>Fraunhofer-ePrints</source><creator>Höller, Johannes ; Bickert, Patricia ; Schwartz, Patrick ; Kurnatowski, Martin von ; Kerber, Joachim ; Künzle, Niklaus ; Lorenz, Hilke-Marie ; Asprion, Norbert ; Blagov, Sergej ; Bortz, Michael</creator><creatorcontrib>Höller, Johannes ; Bickert, Patricia ; Schwartz, Patrick ; Kurnatowski, Martin von ; Kerber, Joachim ; Künzle, Niklaus ; Lorenz, Hilke-Marie ; Asprion, Norbert ; Blagov, Sergej ; Bortz, Michael</creatorcontrib><description>Many thermodynamic models used in practice are at least partially empirical and thus require the determination of certain parameters using experimental data. However, due to the complexity of the models involved as well as the inhomogeneity of available data, a straightforward application of basic methods often does not yield a satisfactory result. This work compares three different strategies for the numerical solution of parameter estimation problems, including errors both in the input and in the output variables. Additionally, the new idea to apply multi-criteria optimization techniques to parameter estimation problems is presented. Finally, strategies for the estimation and propagation of the model errors are discussed.</description><identifier>DOI: 10.3390/chemengineering3020056</identifier><language>eng</language><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,780,27859</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-559395.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Höller, Johannes</creatorcontrib><creatorcontrib>Bickert, Patricia</creatorcontrib><creatorcontrib>Schwartz, Patrick</creatorcontrib><creatorcontrib>Kurnatowski, Martin von</creatorcontrib><creatorcontrib>Kerber, Joachim</creatorcontrib><creatorcontrib>Künzle, Niklaus</creatorcontrib><creatorcontrib>Lorenz, Hilke-Marie</creatorcontrib><creatorcontrib>Asprion, Norbert</creatorcontrib><creatorcontrib>Blagov, Sergej</creatorcontrib><creatorcontrib>Bortz, Michael</creatorcontrib><title>Parameter Estimation Strategies in Thermodynamics</title><description>Many thermodynamic models used in practice are at least partially empirical and thus require the determination of certain parameters using experimental data. However, due to the complexity of the models involved as well as the inhomogeneity of available data, a straightforward application of basic methods often does not yield a satisfactory result. This work compares three different strategies for the numerical solution of parameter estimation problems, including errors both in the input and in the output variables. Additionally, the new idea to apply multi-criteria optimization techniques to parameter estimation problems is presented. Finally, strategies for the estimation and propagation of the model errors are discussed.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdjLEKwjAQQLM4iPoLkh9QU2OEzlJxEsHu4Wgv7YG5yCUO_XsdHJydHjx4T6l1ZbbW1mbXjRiRB2JEIR6s2RvjjnNV3UAgYkHRTS4UoVBifS8CBQfCrIl1O6LE1E8Mkbq8VLMAj4yrLxfqcG7a02UTBF48poDin_I5yeQTkP_RPfqrd662tbN_Zm-D50cU</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Höller, Johannes</creator><creator>Bickert, Patricia</creator><creator>Schwartz, Patrick</creator><creator>Kurnatowski, Martin von</creator><creator>Kerber, Joachim</creator><creator>Künzle, Niklaus</creator><creator>Lorenz, Hilke-Marie</creator><creator>Asprion, Norbert</creator><creator>Blagov, Sergej</creator><creator>Bortz, Michael</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2019</creationdate><title>Parameter Estimation Strategies in Thermodynamics</title><author>Höller, Johannes ; Bickert, Patricia ; Schwartz, Patrick ; Kurnatowski, Martin von ; Kerber, Joachim ; Künzle, Niklaus ; Lorenz, Hilke-Marie ; Asprion, Norbert ; Blagov, Sergej ; Bortz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5593953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Höller, Johannes</creatorcontrib><creatorcontrib>Bickert, Patricia</creatorcontrib><creatorcontrib>Schwartz, Patrick</creatorcontrib><creatorcontrib>Kurnatowski, Martin von</creatorcontrib><creatorcontrib>Kerber, Joachim</creatorcontrib><creatorcontrib>Künzle, Niklaus</creatorcontrib><creatorcontrib>Lorenz, Hilke-Marie</creatorcontrib><creatorcontrib>Asprion, Norbert</creatorcontrib><creatorcontrib>Blagov, Sergej</creatorcontrib><creatorcontrib>Bortz, Michael</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Höller, Johannes</au><au>Bickert, Patricia</au><au>Schwartz, Patrick</au><au>Kurnatowski, Martin von</au><au>Kerber, Joachim</au><au>Künzle, Niklaus</au><au>Lorenz, Hilke-Marie</au><au>Asprion, Norbert</au><au>Blagov, Sergej</au><au>Bortz, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Estimation Strategies in Thermodynamics</atitle><date>2019</date><risdate>2019</risdate><abstract>Many thermodynamic models used in practice are at least partially empirical and thus require the determination of certain parameters using experimental data. However, due to the complexity of the models involved as well as the inhomogeneity of available data, a straightforward application of basic methods often does not yield a satisfactory result. This work compares three different strategies for the numerical solution of parameter estimation problems, including errors both in the input and in the output variables. Additionally, the new idea to apply multi-criteria optimization techniques to parameter estimation problems is presented. Finally, strategies for the estimation and propagation of the model errors are discussed.</abstract><doi>10.3390/chemengineering3020056</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.3390/chemengineering3020056 |
ispartof | |
issn | |
language | eng |
recordid | cdi_fraunhofer_primary_oai_fraunhofer_de_N_559395 |
source | Fraunhofer-ePrints |
title | Parameter Estimation Strategies in Thermodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Estimation%20Strategies%20in%20Thermodynamics&rft.au=H%C3%B6ller,%20Johannes&rft.date=2019&rft_id=info:doi/10.3390/chemengineering3020056&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_559395%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |