Parameter Estimation Strategies in Thermodynamics

Many thermodynamic models used in practice are at least partially empirical and thus require the determination of certain parameters using experimental data. However, due to the complexity of the models involved as well as the inhomogeneity of available data, a straightforward application of basic m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Höller, Johannes, Bickert, Patricia, Schwartz, Patrick, Kurnatowski, Martin von, Kerber, Joachim, Künzle, Niklaus, Lorenz, Hilke-Marie, Asprion, Norbert, Blagov, Sergej, Bortz, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Höller, Johannes
Bickert, Patricia
Schwartz, Patrick
Kurnatowski, Martin von
Kerber, Joachim
Künzle, Niklaus
Lorenz, Hilke-Marie
Asprion, Norbert
Blagov, Sergej
Bortz, Michael
description Many thermodynamic models used in practice are at least partially empirical and thus require the determination of certain parameters using experimental data. However, due to the complexity of the models involved as well as the inhomogeneity of available data, a straightforward application of basic methods often does not yield a satisfactory result. This work compares three different strategies for the numerical solution of parameter estimation problems, including errors both in the input and in the output variables. Additionally, the new idea to apply multi-criteria optimization techniques to parameter estimation problems is presented. Finally, strategies for the estimation and propagation of the model errors are discussed.
doi_str_mv 10.3390/chemengineering3020056
format Article
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_559395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_559395</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5593953</originalsourceid><addsrcrecordid>eNqdjLEKwjAQQLM4iPoLkh9QU2OEzlJxEsHu4Wgv7YG5yCUO_XsdHJydHjx4T6l1ZbbW1mbXjRiRB2JEIR6s2RvjjnNV3UAgYkHRTS4UoVBifS8CBQfCrIl1O6LE1E8Mkbq8VLMAj4yrLxfqcG7a02UTBF48poDin_I5yeQTkP_RPfqrd662tbN_Zm-D50cU</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parameter Estimation Strategies in Thermodynamics</title><source>Fraunhofer-ePrints</source><creator>Höller, Johannes ; Bickert, Patricia ; Schwartz, Patrick ; Kurnatowski, Martin von ; Kerber, Joachim ; Künzle, Niklaus ; Lorenz, Hilke-Marie ; Asprion, Norbert ; Blagov, Sergej ; Bortz, Michael</creator><creatorcontrib>Höller, Johannes ; Bickert, Patricia ; Schwartz, Patrick ; Kurnatowski, Martin von ; Kerber, Joachim ; Künzle, Niklaus ; Lorenz, Hilke-Marie ; Asprion, Norbert ; Blagov, Sergej ; Bortz, Michael</creatorcontrib><description>Many thermodynamic models used in practice are at least partially empirical and thus require the determination of certain parameters using experimental data. However, due to the complexity of the models involved as well as the inhomogeneity of available data, a straightforward application of basic methods often does not yield a satisfactory result. This work compares three different strategies for the numerical solution of parameter estimation problems, including errors both in the input and in the output variables. Additionally, the new idea to apply multi-criteria optimization techniques to parameter estimation problems is presented. Finally, strategies for the estimation and propagation of the model errors are discussed.</description><identifier>DOI: 10.3390/chemengineering3020056</identifier><language>eng</language><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,780,27859</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-559395.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Höller, Johannes</creatorcontrib><creatorcontrib>Bickert, Patricia</creatorcontrib><creatorcontrib>Schwartz, Patrick</creatorcontrib><creatorcontrib>Kurnatowski, Martin von</creatorcontrib><creatorcontrib>Kerber, Joachim</creatorcontrib><creatorcontrib>Künzle, Niklaus</creatorcontrib><creatorcontrib>Lorenz, Hilke-Marie</creatorcontrib><creatorcontrib>Asprion, Norbert</creatorcontrib><creatorcontrib>Blagov, Sergej</creatorcontrib><creatorcontrib>Bortz, Michael</creatorcontrib><title>Parameter Estimation Strategies in Thermodynamics</title><description>Many thermodynamic models used in practice are at least partially empirical and thus require the determination of certain parameters using experimental data. However, due to the complexity of the models involved as well as the inhomogeneity of available data, a straightforward application of basic methods often does not yield a satisfactory result. This work compares three different strategies for the numerical solution of parameter estimation problems, including errors both in the input and in the output variables. Additionally, the new idea to apply multi-criteria optimization techniques to parameter estimation problems is presented. Finally, strategies for the estimation and propagation of the model errors are discussed.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdjLEKwjAQQLM4iPoLkh9QU2OEzlJxEsHu4Wgv7YG5yCUO_XsdHJydHjx4T6l1ZbbW1mbXjRiRB2JEIR6s2RvjjnNV3UAgYkHRTS4UoVBifS8CBQfCrIl1O6LE1E8Mkbq8VLMAj4yrLxfqcG7a02UTBF48poDin_I5yeQTkP_RPfqrd662tbN_Zm-D50cU</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Höller, Johannes</creator><creator>Bickert, Patricia</creator><creator>Schwartz, Patrick</creator><creator>Kurnatowski, Martin von</creator><creator>Kerber, Joachim</creator><creator>Künzle, Niklaus</creator><creator>Lorenz, Hilke-Marie</creator><creator>Asprion, Norbert</creator><creator>Blagov, Sergej</creator><creator>Bortz, Michael</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2019</creationdate><title>Parameter Estimation Strategies in Thermodynamics</title><author>Höller, Johannes ; Bickert, Patricia ; Schwartz, Patrick ; Kurnatowski, Martin von ; Kerber, Joachim ; Künzle, Niklaus ; Lorenz, Hilke-Marie ; Asprion, Norbert ; Blagov, Sergej ; Bortz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5593953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Höller, Johannes</creatorcontrib><creatorcontrib>Bickert, Patricia</creatorcontrib><creatorcontrib>Schwartz, Patrick</creatorcontrib><creatorcontrib>Kurnatowski, Martin von</creatorcontrib><creatorcontrib>Kerber, Joachim</creatorcontrib><creatorcontrib>Künzle, Niklaus</creatorcontrib><creatorcontrib>Lorenz, Hilke-Marie</creatorcontrib><creatorcontrib>Asprion, Norbert</creatorcontrib><creatorcontrib>Blagov, Sergej</creatorcontrib><creatorcontrib>Bortz, Michael</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Höller, Johannes</au><au>Bickert, Patricia</au><au>Schwartz, Patrick</au><au>Kurnatowski, Martin von</au><au>Kerber, Joachim</au><au>Künzle, Niklaus</au><au>Lorenz, Hilke-Marie</au><au>Asprion, Norbert</au><au>Blagov, Sergej</au><au>Bortz, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Estimation Strategies in Thermodynamics</atitle><date>2019</date><risdate>2019</risdate><abstract>Many thermodynamic models used in practice are at least partially empirical and thus require the determination of certain parameters using experimental data. However, due to the complexity of the models involved as well as the inhomogeneity of available data, a straightforward application of basic methods often does not yield a satisfactory result. This work compares three different strategies for the numerical solution of parameter estimation problems, including errors both in the input and in the output variables. Additionally, the new idea to apply multi-criteria optimization techniques to parameter estimation problems is presented. Finally, strategies for the estimation and propagation of the model errors are discussed.</abstract><doi>10.3390/chemengineering3020056</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.3390/chemengineering3020056
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_559395
source Fraunhofer-ePrints
title Parameter Estimation Strategies in Thermodynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Estimation%20Strategies%20in%20Thermodynamics&rft.au=H%C3%B6ller,%20Johannes&rft.date=2019&rft_id=info:doi/10.3390/chemengineering3020056&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_559395%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true