Combination of sensor-embedded and secure server-distributed artificial intelligence for healthcare applications

The application of artificial intelligence (AI) in the areas of health, care and social participation offers great opportunities but also involves great challenges. Extensive regulatory, ethical and data-security related requirements exist for data recording, storage and processing of respective per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gembaczka, Pierre, Heidemann, Burkhard, Bennertz, Bernhard, Gröting, Wolfgang, Norgall, Thomas, Seidl, Karsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Gembaczka, Pierre
Heidemann, Burkhard
Bennertz, Bernhard
Gröting, Wolfgang
Norgall, Thomas
Seidl, Karsten
description The application of artificial intelligence (AI) in the areas of health, care and social participation offers great opportunities but also involves great challenges. Extensive regulatory, ethical and data-security related requirements exist for data recording, storage and processing of respective personalized and patient-related data. “Artificial Intelligence as a Service” (AIaaS) is pushed for consumer applications by global players, which implies data storage on external database server. However, the available solutions do not meet the requirements. Moreover, small and medium-sized enterprises (SMEs) in the field of healthcare fear the loss of data sovereignty and information outflow. In this paper, we propose a secure and resource-efficient approach by embedding AI directly close to the sensor in combination with secure and distributed data processing on local server or certified “Trusted Data Center”. For this purpose, we have developed the Artificial Intelligence for Embedded Systems (AIfES) platform-independent machine learning library in C programming language. It contains a fully configurable deep artificial neural network with feedforward structure. The library can be run directly on a microcontroller and even allows to train the neural network. Possible healthcare applications include direct (pre-) processing of sensor data, sensor calibration, pattern recognition and classification.
doi_str_mv 10.1515/cdbme-2019-0008
format Article
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_559210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_559210</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5592103</originalsourceid><addsrcrecordid>eNqdjbGKAjEURdNYiG5tmx-IJq4DWotiZbV9eJO8OA8yyfCSEfx7R9nC2urAuRyuECuj16Yxzcb5tke11eagtNb7uRiOuW8pQaWcZA6yYCqZFfYteo9eQvKTcyPjBL4jK0-lMrVjfa1cKZAjiJJSxRjphsmhDJllhxBr52AqYRgiufdHWYpZgFjw558LsTuf_o4XFRjG1OWAbAemHvhhM5D90B7t1TbNYWv075fZE7wrW5s</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combination of sensor-embedded and secure server-distributed artificial intelligence for healthcare applications</title><source>Fraunhofer-ePrints</source><creator>Gembaczka, Pierre ; Heidemann, Burkhard ; Bennertz, Bernhard ; Gröting, Wolfgang ; Norgall, Thomas ; Seidl, Karsten</creator><creatorcontrib>Gembaczka, Pierre ; Heidemann, Burkhard ; Bennertz, Bernhard ; Gröting, Wolfgang ; Norgall, Thomas ; Seidl, Karsten</creatorcontrib><description>The application of artificial intelligence (AI) in the areas of health, care and social participation offers great opportunities but also involves great challenges. Extensive regulatory, ethical and data-security related requirements exist for data recording, storage and processing of respective personalized and patient-related data. “Artificial Intelligence as a Service” (AIaaS) is pushed for consumer applications by global players, which implies data storage on external database server. However, the available solutions do not meet the requirements. Moreover, small and medium-sized enterprises (SMEs) in the field of healthcare fear the loss of data sovereignty and information outflow. In this paper, we propose a secure and resource-efficient approach by embedding AI directly close to the sensor in combination with secure and distributed data processing on local server or certified “Trusted Data Center”. For this purpose, we have developed the Artificial Intelligence for Embedded Systems (AIfES) platform-independent machine learning library in C programming language. It contains a fully configurable deep artificial neural network with feedforward structure. The library can be run directly on a microcontroller and even allows to train the neural network. Possible healthcare applications include direct (pre-) processing of sensor data, sensor calibration, pattern recognition and classification.</description><identifier>DOI: 10.1515/cdbme-2019-0008</identifier><language>eng</language><subject>artificial intelligence (AI) ; embedded AI ; embedded system ; health avatar ; neural network</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,776,27837</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-559210.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gembaczka, Pierre</creatorcontrib><creatorcontrib>Heidemann, Burkhard</creatorcontrib><creatorcontrib>Bennertz, Bernhard</creatorcontrib><creatorcontrib>Gröting, Wolfgang</creatorcontrib><creatorcontrib>Norgall, Thomas</creatorcontrib><creatorcontrib>Seidl, Karsten</creatorcontrib><title>Combination of sensor-embedded and secure server-distributed artificial intelligence for healthcare applications</title><description>The application of artificial intelligence (AI) in the areas of health, care and social participation offers great opportunities but also involves great challenges. Extensive regulatory, ethical and data-security related requirements exist for data recording, storage and processing of respective personalized and patient-related data. “Artificial Intelligence as a Service” (AIaaS) is pushed for consumer applications by global players, which implies data storage on external database server. However, the available solutions do not meet the requirements. Moreover, small and medium-sized enterprises (SMEs) in the field of healthcare fear the loss of data sovereignty and information outflow. In this paper, we propose a secure and resource-efficient approach by embedding AI directly close to the sensor in combination with secure and distributed data processing on local server or certified “Trusted Data Center”. For this purpose, we have developed the Artificial Intelligence for Embedded Systems (AIfES) platform-independent machine learning library in C programming language. It contains a fully configurable deep artificial neural network with feedforward structure. The library can be run directly on a microcontroller and even allows to train the neural network. Possible healthcare applications include direct (pre-) processing of sensor data, sensor calibration, pattern recognition and classification.</description><subject>artificial intelligence (AI)</subject><subject>embedded AI</subject><subject>embedded system</subject><subject>health avatar</subject><subject>neural network</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdjbGKAjEURdNYiG5tmx-IJq4DWotiZbV9eJO8OA8yyfCSEfx7R9nC2urAuRyuECuj16Yxzcb5tke11eagtNb7uRiOuW8pQaWcZA6yYCqZFfYteo9eQvKTcyPjBL4jK0-lMrVjfa1cKZAjiJJSxRjphsmhDJllhxBr52AqYRgiufdHWYpZgFjw558LsTuf_o4XFRjG1OWAbAemHvhhM5D90B7t1TbNYWv075fZE7wrW5s</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Gembaczka, Pierre</creator><creator>Heidemann, Burkhard</creator><creator>Bennertz, Bernhard</creator><creator>Gröting, Wolfgang</creator><creator>Norgall, Thomas</creator><creator>Seidl, Karsten</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2019</creationdate><title>Combination of sensor-embedded and secure server-distributed artificial intelligence for healthcare applications</title><author>Gembaczka, Pierre ; Heidemann, Burkhard ; Bennertz, Bernhard ; Gröting, Wolfgang ; Norgall, Thomas ; Seidl, Karsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5592103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>artificial intelligence (AI)</topic><topic>embedded AI</topic><topic>embedded system</topic><topic>health avatar</topic><topic>neural network</topic><toplevel>online_resources</toplevel><creatorcontrib>Gembaczka, Pierre</creatorcontrib><creatorcontrib>Heidemann, Burkhard</creatorcontrib><creatorcontrib>Bennertz, Bernhard</creatorcontrib><creatorcontrib>Gröting, Wolfgang</creatorcontrib><creatorcontrib>Norgall, Thomas</creatorcontrib><creatorcontrib>Seidl, Karsten</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gembaczka, Pierre</au><au>Heidemann, Burkhard</au><au>Bennertz, Bernhard</au><au>Gröting, Wolfgang</au><au>Norgall, Thomas</au><au>Seidl, Karsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of sensor-embedded and secure server-distributed artificial intelligence for healthcare applications</atitle><date>2019</date><risdate>2019</risdate><abstract>The application of artificial intelligence (AI) in the areas of health, care and social participation offers great opportunities but also involves great challenges. Extensive regulatory, ethical and data-security related requirements exist for data recording, storage and processing of respective personalized and patient-related data. “Artificial Intelligence as a Service” (AIaaS) is pushed for consumer applications by global players, which implies data storage on external database server. However, the available solutions do not meet the requirements. Moreover, small and medium-sized enterprises (SMEs) in the field of healthcare fear the loss of data sovereignty and information outflow. In this paper, we propose a secure and resource-efficient approach by embedding AI directly close to the sensor in combination with secure and distributed data processing on local server or certified “Trusted Data Center”. For this purpose, we have developed the Artificial Intelligence for Embedded Systems (AIfES) platform-independent machine learning library in C programming language. It contains a fully configurable deep artificial neural network with feedforward structure. The library can be run directly on a microcontroller and even allows to train the neural network. Possible healthcare applications include direct (pre-) processing of sensor data, sensor calibration, pattern recognition and classification.</abstract><doi>10.1515/cdbme-2019-0008</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1515/cdbme-2019-0008
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_559210
source Fraunhofer-ePrints
subjects artificial intelligence (AI)
embedded AI
embedded system
health avatar
neural network
title Combination of sensor-embedded and secure server-distributed artificial intelligence for healthcare applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20sensor-embedded%20and%20secure%20server-distributed%20artificial%20intelligence%20for%20healthcare%20applications&rft.au=Gembaczka,%20Pierre&rft.date=2019&rft_id=info:doi/10.1515/cdbme-2019-0008&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_559210%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true