Optimization of global production scheduling with deep reinforcement learning

Industrie 4.0 introduces decentralized, self-organizing and self-learning systems for production control. At the same time, new machine learning algorithms are getting increasingly powerful and solve real world problems. We apply Google DeepMind's Deep Q Network (DQN) agent algorithm for Reinfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Waschneck, Bernd, Reichstaller, André, Belzner, Lenz, Altenmüller, Thomas, Bauernhansl, Thomas, Knapp, Alexander, Kyek, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Waschneck, Bernd
Reichstaller, André
Belzner, Lenz
Altenmüller, Thomas
Bauernhansl, Thomas
Knapp, Alexander
Kyek, Andreas
description Industrie 4.0 introduces decentralized, self-organizing and self-learning systems for production control. At the same time, new machine learning algorithms are getting increasingly powerful and solve real world problems. We apply Google DeepMind's Deep Q Network (DQN) agent algorithm for Reinforcement Learning (RL) to production scheduling to achieve the Industrie 4.0 vision for production control. In an RL environment cooperative DQN agents, which utilize deep neural networks, are trained with user-defined objectives to optimize scheduling. We validate our system with a small factory simulation, which is modeling an abstracted frontend-of-line semiconductor production facility.
doi_str_mv 10.1016/j.procir.2018.03.212
format Article
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_520817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_520817</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5208173</originalsourceid><addsrcrecordid>eNqdi7sKwjAUQLM4iPoHDvkBY9L66C6Ki7q4h5jctFfSpNy2iH69RRycnQ4czmFsrqRQUm2Wd9FQskgik6oQMheZysbsdGk6rPFlOkyRJ8_LkG4m8KF1vf3I1lbg-oCx5A_sKu4AGk6A0SeyUEPseABDcQimbORNaGH25YStDvvr7rjwZPpYJQ-kG8La0FMng_pHO9Bnvc5kobb5n9sb1lpP1w</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of global production scheduling with deep reinforcement learning</title><source>Fraunhofer-ePrints</source><creator>Waschneck, Bernd ; Reichstaller, André ; Belzner, Lenz ; Altenmüller, Thomas ; Bauernhansl, Thomas ; Knapp, Alexander ; Kyek, Andreas</creator><creatorcontrib>Waschneck, Bernd ; Reichstaller, André ; Belzner, Lenz ; Altenmüller, Thomas ; Bauernhansl, Thomas ; Knapp, Alexander ; Kyek, Andreas</creatorcontrib><description>Industrie 4.0 introduces decentralized, self-organizing and self-learning systems for production control. At the same time, new machine learning algorithms are getting increasingly powerful and solve real world problems. We apply Google DeepMind's Deep Q Network (DQN) agent algorithm for Reinforcement Learning (RL) to production scheduling to achieve the Industrie 4.0 vision for production control. In an RL environment cooperative DQN agents, which utilize deep neural networks, are trained with user-defined objectives to optimize scheduling. We validate our system with a small factory simulation, which is modeling an abstracted frontend-of-line semiconductor production facility.</description><identifier>DOI: 10.1016/j.procir.2018.03.212</identifier><language>eng</language><subject>Bestärkendes Lernen ; Fertigungsplanung ; maschinelles Lernen</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,780,27860</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-520817.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Waschneck, Bernd</creatorcontrib><creatorcontrib>Reichstaller, André</creatorcontrib><creatorcontrib>Belzner, Lenz</creatorcontrib><creatorcontrib>Altenmüller, Thomas</creatorcontrib><creatorcontrib>Bauernhansl, Thomas</creatorcontrib><creatorcontrib>Knapp, Alexander</creatorcontrib><creatorcontrib>Kyek, Andreas</creatorcontrib><title>Optimization of global production scheduling with deep reinforcement learning</title><description>Industrie 4.0 introduces decentralized, self-organizing and self-learning systems for production control. At the same time, new machine learning algorithms are getting increasingly powerful and solve real world problems. We apply Google DeepMind's Deep Q Network (DQN) agent algorithm for Reinforcement Learning (RL) to production scheduling to achieve the Industrie 4.0 vision for production control. In an RL environment cooperative DQN agents, which utilize deep neural networks, are trained with user-defined objectives to optimize scheduling. We validate our system with a small factory simulation, which is modeling an abstracted frontend-of-line semiconductor production facility.</description><subject>Bestärkendes Lernen</subject><subject>Fertigungsplanung</subject><subject>maschinelles Lernen</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdi7sKwjAUQLM4iPoHDvkBY9L66C6Ki7q4h5jctFfSpNy2iH69RRycnQ4czmFsrqRQUm2Wd9FQskgik6oQMheZysbsdGk6rPFlOkyRJ8_LkG4m8KF1vf3I1lbg-oCx5A_sKu4AGk6A0SeyUEPseABDcQimbORNaGH25YStDvvr7rjwZPpYJQ-kG8La0FMng_pHO9Bnvc5kobb5n9sb1lpP1w</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Waschneck, Bernd</creator><creator>Reichstaller, André</creator><creator>Belzner, Lenz</creator><creator>Altenmüller, Thomas</creator><creator>Bauernhansl, Thomas</creator><creator>Knapp, Alexander</creator><creator>Kyek, Andreas</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2018</creationdate><title>Optimization of global production scheduling with deep reinforcement learning</title><author>Waschneck, Bernd ; Reichstaller, André ; Belzner, Lenz ; Altenmüller, Thomas ; Bauernhansl, Thomas ; Knapp, Alexander ; Kyek, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_5208173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bestärkendes Lernen</topic><topic>Fertigungsplanung</topic><topic>maschinelles Lernen</topic><toplevel>online_resources</toplevel><creatorcontrib>Waschneck, Bernd</creatorcontrib><creatorcontrib>Reichstaller, André</creatorcontrib><creatorcontrib>Belzner, Lenz</creatorcontrib><creatorcontrib>Altenmüller, Thomas</creatorcontrib><creatorcontrib>Bauernhansl, Thomas</creatorcontrib><creatorcontrib>Knapp, Alexander</creatorcontrib><creatorcontrib>Kyek, Andreas</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Waschneck, Bernd</au><au>Reichstaller, André</au><au>Belzner, Lenz</au><au>Altenmüller, Thomas</au><au>Bauernhansl, Thomas</au><au>Knapp, Alexander</au><au>Kyek, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of global production scheduling with deep reinforcement learning</atitle><date>2018</date><risdate>2018</risdate><abstract>Industrie 4.0 introduces decentralized, self-organizing and self-learning systems for production control. At the same time, new machine learning algorithms are getting increasingly powerful and solve real world problems. We apply Google DeepMind's Deep Q Network (DQN) agent algorithm for Reinforcement Learning (RL) to production scheduling to achieve the Industrie 4.0 vision for production control. In an RL environment cooperative DQN agents, which utilize deep neural networks, are trained with user-defined objectives to optimize scheduling. We validate our system with a small factory simulation, which is modeling an abstracted frontend-of-line semiconductor production facility.</abstract><doi>10.1016/j.procir.2018.03.212</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1016/j.procir.2018.03.212
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_520817
source Fraunhofer-ePrints
subjects Bestärkendes Lernen
Fertigungsplanung
maschinelles Lernen
title Optimization of global production scheduling with deep reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20global%20production%20scheduling%20with%20deep%20reinforcement%20learning&rft.au=Waschneck,%20Bernd&rft.date=2018&rft_id=info:doi/10.1016/j.procir.2018.03.212&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_520817%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true