LPCVD in-situ doped silicon for thermoelectric applications
In semiconductor industry doping of polysilicon materials is often achieved with ion-implantation, provoking a relatively high thermal budget. In this study we have analyzed an alternative approach via LPCVD in-situ phosphorus doping with subsequent RTA on 150 mm/300 mm wafers in order to obtain Si-...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Calvo, Jesús Drescher, Maximilian Kühnel, Kati Sauer, Bodo Müller, Michael Schmidt, Christian Boui, Fatima Völklein, Friedemann Wagner-Reetz, Maik |
description | In semiconductor industry doping of polysilicon materials is often achieved with ion-implantation, provoking a relatively high thermal budget. In this study we have analyzed an alternative approach via LPCVD in-situ phosphorus doping with subsequent RTA on 150 mm/300 mm wafers in order to obtain Si-based materials for thermoelectric applications. With this process integration a lowering of the thermal budget, a release of film stress and an enhancement of throughput are achieved. Additionally, the dopants are distributed uniformly and there are more process tuning possibilities with this process integration. The investigation includes ToF-SIMS for depth profiling of the dopant and XRD/ SEM analysis for microstructure analysis. The a-Si:P with RTA and poly-Si:P with RTA thin films were patterned in order to investigate the thermoelectric properties. The results suggest these LPCVD in-situ P-doped Si-based materials as suitable candidates for practical applications in the semiconductor industry. |
doi_str_mv | 10.1016/j.matpr.2017.12.272 |
format | Article |
fullrecord | <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_496999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_496999</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_4969993</originalsourceid><addsrcrecordid>eNqdi7EKwjAUALM4iPoFLvmBxiaWluBYFQcRB3ENjzahT9okvMTBv9fBwdnp4I5jbC1LIUtZbx5ighxJqFI2QiqhGjVnu_O1ve85-iJhfvI-RNvzhCN2wXMXiOfB0hTsaLtM2HGI8dMgY_BpyWYOxmRXXy5YdTzc2lPhCJ5-CM6SiYQT0MsEQPOje2suptK11nr75_YGHABH3g</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LPCVD in-situ doped silicon for thermoelectric applications</title><source>Fraunhofer-ePrints</source><creator>Calvo, Jesús ; Drescher, Maximilian ; Kühnel, Kati ; Sauer, Bodo ; Müller, Michael ; Schmidt, Christian ; Boui, Fatima ; Völklein, Friedemann ; Wagner-Reetz, Maik</creator><creatorcontrib>Calvo, Jesús ; Drescher, Maximilian ; Kühnel, Kati ; Sauer, Bodo ; Müller, Michael ; Schmidt, Christian ; Boui, Fatima ; Völklein, Friedemann ; Wagner-Reetz, Maik</creatorcontrib><description>In semiconductor industry doping of polysilicon materials is often achieved with ion-implantation, provoking a relatively high thermal budget. In this study we have analyzed an alternative approach via LPCVD in-situ phosphorus doping with subsequent RTA on 150 mm/300 mm wafers in order to obtain Si-based materials for thermoelectric applications. With this process integration a lowering of the thermal budget, a release of film stress and an enhancement of throughput are achieved. Additionally, the dopants are distributed uniformly and there are more process tuning possibilities with this process integration. The investigation includes ToF-SIMS for depth profiling of the dopant and XRD/ SEM analysis for microstructure analysis. The a-Si:P with RTA and poly-Si:P with RTA thin films were patterned in order to investigate the thermoelectric properties. The results suggest these LPCVD in-situ P-doped Si-based materials as suitable candidates for practical applications in the semiconductor industry.</description><identifier>DOI: 10.1016/j.matpr.2017.12.272</identifier><language>eng</language><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,777,27841</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-496999.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Calvo, Jesús</creatorcontrib><creatorcontrib>Drescher, Maximilian</creatorcontrib><creatorcontrib>Kühnel, Kati</creatorcontrib><creatorcontrib>Sauer, Bodo</creatorcontrib><creatorcontrib>Müller, Michael</creatorcontrib><creatorcontrib>Schmidt, Christian</creatorcontrib><creatorcontrib>Boui, Fatima</creatorcontrib><creatorcontrib>Völklein, Friedemann</creatorcontrib><creatorcontrib>Wagner-Reetz, Maik</creatorcontrib><title>LPCVD in-situ doped silicon for thermoelectric applications</title><description>In semiconductor industry doping of polysilicon materials is often achieved with ion-implantation, provoking a relatively high thermal budget. In this study we have analyzed an alternative approach via LPCVD in-situ phosphorus doping with subsequent RTA on 150 mm/300 mm wafers in order to obtain Si-based materials for thermoelectric applications. With this process integration a lowering of the thermal budget, a release of film stress and an enhancement of throughput are achieved. Additionally, the dopants are distributed uniformly and there are more process tuning possibilities with this process integration. The investigation includes ToF-SIMS for depth profiling of the dopant and XRD/ SEM analysis for microstructure analysis. The a-Si:P with RTA and poly-Si:P with RTA thin films were patterned in order to investigate the thermoelectric properties. The results suggest these LPCVD in-situ P-doped Si-based materials as suitable candidates for practical applications in the semiconductor industry.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdi7EKwjAUALM4iPoFLvmBxiaWluBYFQcRB3ENjzahT9okvMTBv9fBwdnp4I5jbC1LIUtZbx5ighxJqFI2QiqhGjVnu_O1ve85-iJhfvI-RNvzhCN2wXMXiOfB0hTsaLtM2HGI8dMgY_BpyWYOxmRXXy5YdTzc2lPhCJ5-CM6SiYQT0MsEQPOje2suptK11nr75_YGHABH3g</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Calvo, Jesús</creator><creator>Drescher, Maximilian</creator><creator>Kühnel, Kati</creator><creator>Sauer, Bodo</creator><creator>Müller, Michael</creator><creator>Schmidt, Christian</creator><creator>Boui, Fatima</creator><creator>Völklein, Friedemann</creator><creator>Wagner-Reetz, Maik</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2018</creationdate><title>LPCVD in-situ doped silicon for thermoelectric applications</title><author>Calvo, Jesús ; Drescher, Maximilian ; Kühnel, Kati ; Sauer, Bodo ; Müller, Michael ; Schmidt, Christian ; Boui, Fatima ; Völklein, Friedemann ; Wagner-Reetz, Maik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_4969993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Calvo, Jesús</creatorcontrib><creatorcontrib>Drescher, Maximilian</creatorcontrib><creatorcontrib>Kühnel, Kati</creatorcontrib><creatorcontrib>Sauer, Bodo</creatorcontrib><creatorcontrib>Müller, Michael</creatorcontrib><creatorcontrib>Schmidt, Christian</creatorcontrib><creatorcontrib>Boui, Fatima</creatorcontrib><creatorcontrib>Völklein, Friedemann</creatorcontrib><creatorcontrib>Wagner-Reetz, Maik</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Calvo, Jesús</au><au>Drescher, Maximilian</au><au>Kühnel, Kati</au><au>Sauer, Bodo</au><au>Müller, Michael</au><au>Schmidt, Christian</au><au>Boui, Fatima</au><au>Völklein, Friedemann</au><au>Wagner-Reetz, Maik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LPCVD in-situ doped silicon for thermoelectric applications</atitle><date>2018</date><risdate>2018</risdate><abstract>In semiconductor industry doping of polysilicon materials is often achieved with ion-implantation, provoking a relatively high thermal budget. In this study we have analyzed an alternative approach via LPCVD in-situ phosphorus doping with subsequent RTA on 150 mm/300 mm wafers in order to obtain Si-based materials for thermoelectric applications. With this process integration a lowering of the thermal budget, a release of film stress and an enhancement of throughput are achieved. Additionally, the dopants are distributed uniformly and there are more process tuning possibilities with this process integration. The investigation includes ToF-SIMS for depth profiling of the dopant and XRD/ SEM analysis for microstructure analysis. The a-Si:P with RTA and poly-Si:P with RTA thin films were patterned in order to investigate the thermoelectric properties. The results suggest these LPCVD in-situ P-doped Si-based materials as suitable candidates for practical applications in the semiconductor industry.</abstract><doi>10.1016/j.matpr.2017.12.272</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.1016/j.matpr.2017.12.272 |
ispartof | |
issn | |
language | eng |
recordid | cdi_fraunhofer_primary_oai_fraunhofer_de_N_496999 |
source | Fraunhofer-ePrints |
title | LPCVD in-situ doped silicon for thermoelectric applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LPCVD%20in-situ%20doped%20silicon%20for%20thermoelectric%20applications&rft.au=Calvo,%20Jes%C3%BAs&rft.date=2018&rft_id=info:doi/10.1016/j.matpr.2017.12.272&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_496999%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |