LPCVD in-situ doped silicon for thermoelectric applications

In semiconductor industry doping of polysilicon materials is often achieved with ion-implantation, provoking a relatively high thermal budget. In this study we have analyzed an alternative approach via LPCVD in-situ phosphorus doping with subsequent RTA on 150 mm/300 mm wafers in order to obtain Si-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Calvo, Jesús, Drescher, Maximilian, Kühnel, Kati, Sauer, Bodo, Müller, Michael, Schmidt, Christian, Boui, Fatima, Völklein, Friedemann, Wagner-Reetz, Maik
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Calvo, Jesús
Drescher, Maximilian
Kühnel, Kati
Sauer, Bodo
Müller, Michael
Schmidt, Christian
Boui, Fatima
Völklein, Friedemann
Wagner-Reetz, Maik
description In semiconductor industry doping of polysilicon materials is often achieved with ion-implantation, provoking a relatively high thermal budget. In this study we have analyzed an alternative approach via LPCVD in-situ phosphorus doping with subsequent RTA on 150 mm/300 mm wafers in order to obtain Si-based materials for thermoelectric applications. With this process integration a lowering of the thermal budget, a release of film stress and an enhancement of throughput are achieved. Additionally, the dopants are distributed uniformly and there are more process tuning possibilities with this process integration. The investigation includes ToF-SIMS for depth profiling of the dopant and XRD/ SEM analysis for microstructure analysis. The a-Si:P with RTA and poly-Si:P with RTA thin films were patterned in order to investigate the thermoelectric properties. The results suggest these LPCVD in-situ P-doped Si-based materials as suitable candidates for practical applications in the semiconductor industry.
doi_str_mv 10.1016/j.matpr.2017.12.272
format Article
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_496999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_496999</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_4969993</originalsourceid><addsrcrecordid>eNqdi7EKwjAUALM4iPoFLvmBxiaWluBYFQcRB3ENjzahT9okvMTBv9fBwdnp4I5jbC1LIUtZbx5ighxJqFI2QiqhGjVnu_O1ve85-iJhfvI-RNvzhCN2wXMXiOfB0hTsaLtM2HGI8dMgY_BpyWYOxmRXXy5YdTzc2lPhCJ5-CM6SiYQT0MsEQPOje2suptK11nr75_YGHABH3g</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LPCVD in-situ doped silicon for thermoelectric applications</title><source>Fraunhofer-ePrints</source><creator>Calvo, Jesús ; Drescher, Maximilian ; Kühnel, Kati ; Sauer, Bodo ; Müller, Michael ; Schmidt, Christian ; Boui, Fatima ; Völklein, Friedemann ; Wagner-Reetz, Maik</creator><creatorcontrib>Calvo, Jesús ; Drescher, Maximilian ; Kühnel, Kati ; Sauer, Bodo ; Müller, Michael ; Schmidt, Christian ; Boui, Fatima ; Völklein, Friedemann ; Wagner-Reetz, Maik</creatorcontrib><description>In semiconductor industry doping of polysilicon materials is often achieved with ion-implantation, provoking a relatively high thermal budget. In this study we have analyzed an alternative approach via LPCVD in-situ phosphorus doping with subsequent RTA on 150 mm/300 mm wafers in order to obtain Si-based materials for thermoelectric applications. With this process integration a lowering of the thermal budget, a release of film stress and an enhancement of throughput are achieved. Additionally, the dopants are distributed uniformly and there are more process tuning possibilities with this process integration. The investigation includes ToF-SIMS for depth profiling of the dopant and XRD/ SEM analysis for microstructure analysis. The a-Si:P with RTA and poly-Si:P with RTA thin films were patterned in order to investigate the thermoelectric properties. The results suggest these LPCVD in-situ P-doped Si-based materials as suitable candidates for practical applications in the semiconductor industry.</description><identifier>DOI: 10.1016/j.matpr.2017.12.272</identifier><language>eng</language><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,777,27841</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-496999.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Calvo, Jesús</creatorcontrib><creatorcontrib>Drescher, Maximilian</creatorcontrib><creatorcontrib>Kühnel, Kati</creatorcontrib><creatorcontrib>Sauer, Bodo</creatorcontrib><creatorcontrib>Müller, Michael</creatorcontrib><creatorcontrib>Schmidt, Christian</creatorcontrib><creatorcontrib>Boui, Fatima</creatorcontrib><creatorcontrib>Völklein, Friedemann</creatorcontrib><creatorcontrib>Wagner-Reetz, Maik</creatorcontrib><title>LPCVD in-situ doped silicon for thermoelectric applications</title><description>In semiconductor industry doping of polysilicon materials is often achieved with ion-implantation, provoking a relatively high thermal budget. In this study we have analyzed an alternative approach via LPCVD in-situ phosphorus doping with subsequent RTA on 150 mm/300 mm wafers in order to obtain Si-based materials for thermoelectric applications. With this process integration a lowering of the thermal budget, a release of film stress and an enhancement of throughput are achieved. Additionally, the dopants are distributed uniformly and there are more process tuning possibilities with this process integration. The investigation includes ToF-SIMS for depth profiling of the dopant and XRD/ SEM analysis for microstructure analysis. The a-Si:P with RTA and poly-Si:P with RTA thin films were patterned in order to investigate the thermoelectric properties. The results suggest these LPCVD in-situ P-doped Si-based materials as suitable candidates for practical applications in the semiconductor industry.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdi7EKwjAUALM4iPoFLvmBxiaWluBYFQcRB3ENjzahT9okvMTBv9fBwdnp4I5jbC1LIUtZbx5ighxJqFI2QiqhGjVnu_O1ve85-iJhfvI-RNvzhCN2wXMXiOfB0hTsaLtM2HGI8dMgY_BpyWYOxmRXXy5YdTzc2lPhCJ5-CM6SiYQT0MsEQPOje2suptK11nr75_YGHABH3g</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Calvo, Jesús</creator><creator>Drescher, Maximilian</creator><creator>Kühnel, Kati</creator><creator>Sauer, Bodo</creator><creator>Müller, Michael</creator><creator>Schmidt, Christian</creator><creator>Boui, Fatima</creator><creator>Völklein, Friedemann</creator><creator>Wagner-Reetz, Maik</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2018</creationdate><title>LPCVD in-situ doped silicon for thermoelectric applications</title><author>Calvo, Jesús ; Drescher, Maximilian ; Kühnel, Kati ; Sauer, Bodo ; Müller, Michael ; Schmidt, Christian ; Boui, Fatima ; Völklein, Friedemann ; Wagner-Reetz, Maik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_4969993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Calvo, Jesús</creatorcontrib><creatorcontrib>Drescher, Maximilian</creatorcontrib><creatorcontrib>Kühnel, Kati</creatorcontrib><creatorcontrib>Sauer, Bodo</creatorcontrib><creatorcontrib>Müller, Michael</creatorcontrib><creatorcontrib>Schmidt, Christian</creatorcontrib><creatorcontrib>Boui, Fatima</creatorcontrib><creatorcontrib>Völklein, Friedemann</creatorcontrib><creatorcontrib>Wagner-Reetz, Maik</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Calvo, Jesús</au><au>Drescher, Maximilian</au><au>Kühnel, Kati</au><au>Sauer, Bodo</au><au>Müller, Michael</au><au>Schmidt, Christian</au><au>Boui, Fatima</au><au>Völklein, Friedemann</au><au>Wagner-Reetz, Maik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LPCVD in-situ doped silicon for thermoelectric applications</atitle><date>2018</date><risdate>2018</risdate><abstract>In semiconductor industry doping of polysilicon materials is often achieved with ion-implantation, provoking a relatively high thermal budget. In this study we have analyzed an alternative approach via LPCVD in-situ phosphorus doping with subsequent RTA on 150 mm/300 mm wafers in order to obtain Si-based materials for thermoelectric applications. With this process integration a lowering of the thermal budget, a release of film stress and an enhancement of throughput are achieved. Additionally, the dopants are distributed uniformly and there are more process tuning possibilities with this process integration. The investigation includes ToF-SIMS for depth profiling of the dopant and XRD/ SEM analysis for microstructure analysis. The a-Si:P with RTA and poly-Si:P with RTA thin films were patterned in order to investigate the thermoelectric properties. The results suggest these LPCVD in-situ P-doped Si-based materials as suitable candidates for practical applications in the semiconductor industry.</abstract><doi>10.1016/j.matpr.2017.12.272</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1016/j.matpr.2017.12.272
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_496999
source Fraunhofer-ePrints
title LPCVD in-situ doped silicon for thermoelectric applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LPCVD%20in-situ%20doped%20silicon%20for%20thermoelectric%20applications&rft.au=Calvo,%20Jes%C3%BAs&rft.date=2018&rft_id=info:doi/10.1016/j.matpr.2017.12.272&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_496999%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true