Neural networks tool condition monitoring in single-point dressing operations

Cognitive modeling of tool wear progress is employed to obtain a dependable trend of tool wear curves for optimal utilization of tool life and productivity improvement, while preserving the surface integrity of the ground parts. This paper describes a method to characterize the dresser wear conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: D'Addona, D.M, Matarazzo, D, De Aguiar, P.R, Bianchi, E.C, Martins, C.H.R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator D'Addona, D.M
Matarazzo, D
De Aguiar, P.R
Bianchi, E.C
Martins, C.H.R
description Cognitive modeling of tool wear progress is employed to obtain a dependable trend of tool wear curves for optimal utilization of tool life and productivity improvement, while preserving the surface integrity of the ground parts. This paper describes a method to characterize the dresser wear condition utilizing vibration signals by applying a cognitive paradigm, such as Artificial Neural Networks (ANNs). Dressing tests with a single-point dresser were performed in a surface grinding machine and tool wear measurements taken along the experiments. The results show that ANN processing offers an effective method for the monitoring of grinding wheel wear based on vibration signal analysis.
doi_str_mv 10.1016/j.procir.2016.01.001
format Article
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_422665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_422665</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_4226653</originalsourceid><addsrcrecordid>eNqdizEOwjAQBN1QIOAHFP5AjB1CPoBANKSityziwIFzZ50dIX5PIlFQU412NCvE2mhltKk3DxWZrsCqHJfSRmlt5uLc-IFdkOjzi_iZZCYK8krYQgZC2RNCJga8SUCZRgZfRALMsmWfJiEpenZTnZZi1rmQ_OrLhaiOh8v-VHTsBrxT59lGht7x25ID-6NbbxtblWVd77Z_3j7njVAA</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neural networks tool condition monitoring in single-point dressing operations</title><source>Fraunhofer-ePrints</source><creator>D'Addona, D.M ; Matarazzo, D ; De Aguiar, P.R ; Bianchi, E.C ; Martins, C.H.R</creator><creatorcontrib>D'Addona, D.M ; Matarazzo, D ; De Aguiar, P.R ; Bianchi, E.C ; Martins, C.H.R</creatorcontrib><description>Cognitive modeling of tool wear progress is employed to obtain a dependable trend of tool wear curves for optimal utilization of tool life and productivity improvement, while preserving the surface integrity of the ground parts. This paper describes a method to characterize the dresser wear condition utilizing vibration signals by applying a cognitive paradigm, such as Artificial Neural Networks (ANNs). Dressing tests with a single-point dresser were performed in a surface grinding machine and tool wear measurements taken along the experiments. The results show that ANN processing offers an effective method for the monitoring of grinding wheel wear based on vibration signal analysis.</description><identifier>DOI: 10.1016/j.procir.2016.01.001</identifier><language>eng</language><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,777,27841</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-422665.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>D'Addona, D.M</creatorcontrib><creatorcontrib>Matarazzo, D</creatorcontrib><creatorcontrib>De Aguiar, P.R</creatorcontrib><creatorcontrib>Bianchi, E.C</creatorcontrib><creatorcontrib>Martins, C.H.R</creatorcontrib><title>Neural networks tool condition monitoring in single-point dressing operations</title><description>Cognitive modeling of tool wear progress is employed to obtain a dependable trend of tool wear curves for optimal utilization of tool life and productivity improvement, while preserving the surface integrity of the ground parts. This paper describes a method to characterize the dresser wear condition utilizing vibration signals by applying a cognitive paradigm, such as Artificial Neural Networks (ANNs). Dressing tests with a single-point dresser were performed in a surface grinding machine and tool wear measurements taken along the experiments. The results show that ANN processing offers an effective method for the monitoring of grinding wheel wear based on vibration signal analysis.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdizEOwjAQBN1QIOAHFP5AjB1CPoBANKSityziwIFzZ50dIX5PIlFQU412NCvE2mhltKk3DxWZrsCqHJfSRmlt5uLc-IFdkOjzi_iZZCYK8krYQgZC2RNCJga8SUCZRgZfRALMsmWfJiEpenZTnZZi1rmQ_OrLhaiOh8v-VHTsBrxT59lGht7x25ID-6NbbxtblWVd77Z_3j7njVAA</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>D'Addona, D.M</creator><creator>Matarazzo, D</creator><creator>De Aguiar, P.R</creator><creator>Bianchi, E.C</creator><creator>Martins, C.H.R</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2016</creationdate><title>Neural networks tool condition monitoring in single-point dressing operations</title><author>D'Addona, D.M ; Matarazzo, D ; De Aguiar, P.R ; Bianchi, E.C ; Martins, C.H.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_4226653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>online_resources</toplevel><creatorcontrib>D'Addona, D.M</creatorcontrib><creatorcontrib>Matarazzo, D</creatorcontrib><creatorcontrib>De Aguiar, P.R</creatorcontrib><creatorcontrib>Bianchi, E.C</creatorcontrib><creatorcontrib>Martins, C.H.R</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>D'Addona, D.M</au><au>Matarazzo, D</au><au>De Aguiar, P.R</au><au>Bianchi, E.C</au><au>Martins, C.H.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural networks tool condition monitoring in single-point dressing operations</atitle><date>2016</date><risdate>2016</risdate><abstract>Cognitive modeling of tool wear progress is employed to obtain a dependable trend of tool wear curves for optimal utilization of tool life and productivity improvement, while preserving the surface integrity of the ground parts. This paper describes a method to characterize the dresser wear condition utilizing vibration signals by applying a cognitive paradigm, such as Artificial Neural Networks (ANNs). Dressing tests with a single-point dresser were performed in a surface grinding machine and tool wear measurements taken along the experiments. The results show that ANN processing offers an effective method for the monitoring of grinding wheel wear based on vibration signal analysis.</abstract><doi>10.1016/j.procir.2016.01.001</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1016/j.procir.2016.01.001
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_422665
source Fraunhofer-ePrints
title Neural networks tool condition monitoring in single-point dressing operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20networks%20tool%20condition%20monitoring%20in%20single-point%20dressing%20operations&rft.au=D'Addona,%20D.M&rft.date=2016&rft_id=info:doi/10.1016/j.procir.2016.01.001&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_422665%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true