Validation of a Low-Energy Whole Building Simulation Model

A methodology for validating low-energy whole building simulations is expounded in this paper. The capability of the integrated building-plant system, modeled by means of equation-based environment (IDA ICE), is evaluated to quantify model mismatch. A unique “energy concept” building is considered,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Salvalai, G, Pfafferott, J, Jacob, D
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Salvalai, G
Pfafferott, J
Jacob, D
description A methodology for validating low-energy whole building simulations is expounded in this paper. The capability of the integrated building-plant system, modeled by means of equation-based environment (IDA ICE), is evaluated to quantify model mismatch. A unique “energy concept” building is considered, and consists of various low-exergy technologies: suspended ceiling panels with phase change material (PCM), radiant cooling by plastered capillary tubes, borehole heat exchanger, and free night ventilation. Monitoring data is used to validate the model over the cooling season, and results showed accurate prediction by both the building and plant models (Pfafferot 2003). The primary outcome of this research is the complete, integrated realization of a low-energy whole building simulation with validation results, whereas comparable "energy concept" validation studies are scarce. Furthermore, the high accuracy of the approach lends itself to optimization of low-energy buildings, the investigation and demostration of alternative cooling strategies, and in support of the constuction of such buildings.
format Conference Proceeding
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_220952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_220952</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_2209523</originalsourceid><addsrcrecordid>eNrjZLAKS8zJTEksyczPU8hPU0hU8Mkv13XNSy1Kr1QIz8jPSVVwKs3MScnMS1cIzswtzYGo9M1PSc3hYWBNS8wpTuWF0twMJm6uIc4eumlFiaV5GflpqUXxBUWZuYlFlfH5iZnxSMIpqfF-8UZGBpamRsZkagMAPw1AAA</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Validation of a Low-Energy Whole Building Simulation Model</title><source>Fraunhofer-ePrints</source><creator>Salvalai, G ; Pfafferott, J ; Jacob, D</creator><creatorcontrib>Salvalai, G ; Pfafferott, J ; Jacob, D</creatorcontrib><description>A methodology for validating low-energy whole building simulations is expounded in this paper. The capability of the integrated building-plant system, modeled by means of equation-based environment (IDA ICE), is evaluated to quantify model mismatch. A unique “energy concept” building is considered, and consists of various low-exergy technologies: suspended ceiling panels with phase change material (PCM), radiant cooling by plastered capillary tubes, borehole heat exchanger, and free night ventilation. Monitoring data is used to validate the model over the cooling season, and results showed accurate prediction by both the building and plant models (Pfafferot 2003). The primary outcome of this research is the complete, integrated realization of a low-energy whole building simulation with validation results, whereas comparable "energy concept" validation studies are scarce. Furthermore, the high accuracy of the approach lends itself to optimization of low-energy buildings, the investigation and demostration of alternative cooling strategies, and in support of the constuction of such buildings.</description><language>eng</language><subject>Energieeffiziente Gebäude und Gebäudetechnik ; Thermische Anlagen und Gebäudetechnik ; Thermische Solaranlagen</subject><creationdate>2010</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,315,776,4035,27839</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-220952.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Salvalai, G</creatorcontrib><creatorcontrib>Pfafferott, J</creatorcontrib><creatorcontrib>Jacob, D</creatorcontrib><title>Validation of a Low-Energy Whole Building Simulation Model</title><description>A methodology for validating low-energy whole building simulations is expounded in this paper. The capability of the integrated building-plant system, modeled by means of equation-based environment (IDA ICE), is evaluated to quantify model mismatch. A unique “energy concept” building is considered, and consists of various low-exergy technologies: suspended ceiling panels with phase change material (PCM), radiant cooling by plastered capillary tubes, borehole heat exchanger, and free night ventilation. Monitoring data is used to validate the model over the cooling season, and results showed accurate prediction by both the building and plant models (Pfafferot 2003). The primary outcome of this research is the complete, integrated realization of a low-energy whole building simulation with validation results, whereas comparable "energy concept" validation studies are scarce. Furthermore, the high accuracy of the approach lends itself to optimization of low-energy buildings, the investigation and demostration of alternative cooling strategies, and in support of the constuction of such buildings.</description><subject>Energieeffiziente Gebäude und Gebäudetechnik</subject><subject>Thermische Anlagen und Gebäudetechnik</subject><subject>Thermische Solaranlagen</subject><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNrjZLAKS8zJTEksyczPU8hPU0hU8Mkv13XNSy1Kr1QIz8jPSVVwKs3MScnMS1cIzswtzYGo9M1PSc3hYWBNS8wpTuWF0twMJm6uIc4eumlFiaV5GflpqUXxBUWZuYlFlfH5iZnxSMIpqfF-8UZGBpamRsZkagMAPw1AAA</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Salvalai, G</creator><creator>Pfafferott, J</creator><creator>Jacob, D</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2010</creationdate><title>Validation of a Low-Energy Whole Building Simulation Model</title><author>Salvalai, G ; Pfafferott, J ; Jacob, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_2209523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Energieeffiziente Gebäude und Gebäudetechnik</topic><topic>Thermische Anlagen und Gebäudetechnik</topic><topic>Thermische Solaranlagen</topic><toplevel>online_resources</toplevel><creatorcontrib>Salvalai, G</creatorcontrib><creatorcontrib>Pfafferott, J</creatorcontrib><creatorcontrib>Jacob, D</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salvalai, G</au><au>Pfafferott, J</au><au>Jacob, D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Validation of a Low-Energy Whole Building Simulation Model</atitle><date>2010</date><risdate>2010</risdate><abstract>A methodology for validating low-energy whole building simulations is expounded in this paper. The capability of the integrated building-plant system, modeled by means of equation-based environment (IDA ICE), is evaluated to quantify model mismatch. A unique “energy concept” building is considered, and consists of various low-exergy technologies: suspended ceiling panels with phase change material (PCM), radiant cooling by plastered capillary tubes, borehole heat exchanger, and free night ventilation. Monitoring data is used to validate the model over the cooling season, and results showed accurate prediction by both the building and plant models (Pfafferot 2003). The primary outcome of this research is the complete, integrated realization of a low-energy whole building simulation with validation results, whereas comparable "energy concept" validation studies are scarce. Furthermore, the high accuracy of the approach lends itself to optimization of low-energy buildings, the investigation and demostration of alternative cooling strategies, and in support of the constuction of such buildings.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_220952
source Fraunhofer-ePrints
subjects Energieeffiziente Gebäude und Gebäudetechnik
Thermische Anlagen und Gebäudetechnik
Thermische Solaranlagen
title Validation of a Low-Energy Whole Building Simulation Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Validation%20of%20a%20Low-Energy%20Whole%20Building%20Simulation%20Model&rft.au=Salvalai,%20G&rft.date=2010&rft_id=info:doi/&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_220952%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true