Smoothed particle hydrodynamics simulation of shear-induced powder migration in injection moulding

We present the application of the smoothed particle hydrodynamics (SPH) discretization scheme to Phillips' model for shear-induced particle migration in concentrated suspensions. This model provides an evolution equation for the scalar mean volume fraction of idealized spherical solid particles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kauzlaric, D, Pastewka, L, Meyer, H, Heldele, R, Schulz, M, Weber, O, Piotter, V, Hausselt, J, Greiner, A, Korvink, J.G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kauzlaric, D
Pastewka, L
Meyer, H
Heldele, R
Schulz, M
Weber, O
Piotter, V
Hausselt, J
Greiner, A
Korvink, J.G
description We present the application of the smoothed particle hydrodynamics (SPH) discretization scheme to Phillips' model for shear-induced particle migration in concentrated suspensions. This model provides an evolution equation for the scalar mean volume fraction of idealized spherical solid particles of equal diameter which is discretized by the SPH formalism. In order to obtain a discrete evolution equation with exact conservation properties we treat in fact the occupied volume of the solid particles as the degree of freedom for the fluid particles. We present simulation results in two-and three-dimensional channel flow. The two-dimensional results serve as a verification by a comparison to analytic solutions. The three-dimensional results are used for a comparison with experimental measurements obtained from computer tomography of injection moulded ceramic microparts. We observe the best agreement of measurements with snapshots of the transient simulation for a ratio D-c/D-eta = 0.1 of the two model parameters.
doi_str_mv 10.1098/rsta.2011.0043
format Article
fullrecord <record><control><sourceid>fraunhofer_E3A</sourceid><recordid>TN_cdi_fraunhofer_primary_oai_fraunhofer_de_N_181210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_fraunhofer_de_N_181210</sourcerecordid><originalsourceid>FETCH-fraunhofer_primary_oai_fraunhofer_de_N_1812103</originalsourceid><addsrcrecordid>eNqdi7EOgjAURbs4GHV17g-ALTDgbDROLro3T1rgGdpHXiGGvzeog7PJTW7uyT1CbLVKtdqXO44DpJnSOlWqyJfifvVEQ-us7IEHrDon28ky2SmAxyrKiH7sYEAKkmoZWwecYLBjNSv0tI6lx4Y_D5zzcNV7eBo7i6FZi0UNXXSbb69EcTreDuekZhhDS7Vj0zN64MkQoPnB1pmL0aXOtMr_1F5-vlYT</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Smoothed particle hydrodynamics simulation of shear-induced powder migration in injection moulding</title><source>Fraunhofer-ePrints</source><creator>Kauzlaric, D ; Pastewka, L ; Meyer, H ; Heldele, R ; Schulz, M ; Weber, O ; Piotter, V ; Hausselt, J ; Greiner, A ; Korvink, J.G</creator><creatorcontrib>Kauzlaric, D ; Pastewka, L ; Meyer, H ; Heldele, R ; Schulz, M ; Weber, O ; Piotter, V ; Hausselt, J ; Greiner, A ; Korvink, J.G</creatorcontrib><description>We present the application of the smoothed particle hydrodynamics (SPH) discretization scheme to Phillips' model for shear-induced particle migration in concentrated suspensions. This model provides an evolution equation for the scalar mean volume fraction of idealized spherical solid particles of equal diameter which is discretized by the SPH formalism. In order to obtain a discrete evolution equation with exact conservation properties we treat in fact the occupied volume of the solid particles as the degree of freedom for the fluid particles. We present simulation results in two-and three-dimensional channel flow. The two-dimensional results serve as a verification by a comparison to analytic solutions. The three-dimensional results are used for a comparison with experimental measurements obtained from computer tomography of injection moulded ceramic microparts. We observe the best agreement of measurements with snapshots of the transient simulation for a ratio D-c/D-eta = 0.1 of the two model parameters.</description><identifier>DOI: 10.1098/rsta.2011.0043</identifier><language>eng</language><creationdate>2011</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,776,27839</link.rule.ids><linktorsrc>$$Uhttp://publica.fraunhofer.de/documents/N-181210.html$$EView_record_in_Fraunhofer-Gesellschaft$$FView_record_in_$$GFraunhofer-Gesellschaft$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kauzlaric, D</creatorcontrib><creatorcontrib>Pastewka, L</creatorcontrib><creatorcontrib>Meyer, H</creatorcontrib><creatorcontrib>Heldele, R</creatorcontrib><creatorcontrib>Schulz, M</creatorcontrib><creatorcontrib>Weber, O</creatorcontrib><creatorcontrib>Piotter, V</creatorcontrib><creatorcontrib>Hausselt, J</creatorcontrib><creatorcontrib>Greiner, A</creatorcontrib><creatorcontrib>Korvink, J.G</creatorcontrib><title>Smoothed particle hydrodynamics simulation of shear-induced powder migration in injection moulding</title><description>We present the application of the smoothed particle hydrodynamics (SPH) discretization scheme to Phillips' model for shear-induced particle migration in concentrated suspensions. This model provides an evolution equation for the scalar mean volume fraction of idealized spherical solid particles of equal diameter which is discretized by the SPH formalism. In order to obtain a discrete evolution equation with exact conservation properties we treat in fact the occupied volume of the solid particles as the degree of freedom for the fluid particles. We present simulation results in two-and three-dimensional channel flow. The two-dimensional results serve as a verification by a comparison to analytic solutions. The three-dimensional results are used for a comparison with experimental measurements obtained from computer tomography of injection moulded ceramic microparts. We observe the best agreement of measurements with snapshots of the transient simulation for a ratio D-c/D-eta = 0.1 of the two model parameters.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFSUM</sourceid><sourceid>E3A</sourceid><recordid>eNqdi7EOgjAURbs4GHV17g-ALTDgbDROLro3T1rgGdpHXiGGvzeog7PJTW7uyT1CbLVKtdqXO44DpJnSOlWqyJfifvVEQ-us7IEHrDon28ky2SmAxyrKiH7sYEAKkmoZWwecYLBjNSv0tI6lx4Y_D5zzcNV7eBo7i6FZi0UNXXSbb69EcTreDuekZhhDS7Vj0zN64MkQoPnB1pmL0aXOtMr_1F5-vlYT</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Kauzlaric, D</creator><creator>Pastewka, L</creator><creator>Meyer, H</creator><creator>Heldele, R</creator><creator>Schulz, M</creator><creator>Weber, O</creator><creator>Piotter, V</creator><creator>Hausselt, J</creator><creator>Greiner, A</creator><creator>Korvink, J.G</creator><scope>AFSUM</scope><scope>E3A</scope></search><sort><creationdate>2011</creationdate><title>Smoothed particle hydrodynamics simulation of shear-induced powder migration in injection moulding</title><author>Kauzlaric, D ; Pastewka, L ; Meyer, H ; Heldele, R ; Schulz, M ; Weber, O ; Piotter, V ; Hausselt, J ; Greiner, A ; Korvink, J.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fraunhofer_primary_oai_fraunhofer_de_N_1812103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kauzlaric, D</creatorcontrib><creatorcontrib>Pastewka, L</creatorcontrib><creatorcontrib>Meyer, H</creatorcontrib><creatorcontrib>Heldele, R</creatorcontrib><creatorcontrib>Schulz, M</creatorcontrib><creatorcontrib>Weber, O</creatorcontrib><creatorcontrib>Piotter, V</creatorcontrib><creatorcontrib>Hausselt, J</creatorcontrib><creatorcontrib>Greiner, A</creatorcontrib><creatorcontrib>Korvink, J.G</creatorcontrib><collection>Fraunhofer-ePrints - FT</collection><collection>Fraunhofer-ePrints</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kauzlaric, D</au><au>Pastewka, L</au><au>Meyer, H</au><au>Heldele, R</au><au>Schulz, M</au><au>Weber, O</au><au>Piotter, V</au><au>Hausselt, J</au><au>Greiner, A</au><au>Korvink, J.G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smoothed particle hydrodynamics simulation of shear-induced powder migration in injection moulding</atitle><date>2011</date><risdate>2011</risdate><abstract>We present the application of the smoothed particle hydrodynamics (SPH) discretization scheme to Phillips' model for shear-induced particle migration in concentrated suspensions. This model provides an evolution equation for the scalar mean volume fraction of idealized spherical solid particles of equal diameter which is discretized by the SPH formalism. In order to obtain a discrete evolution equation with exact conservation properties we treat in fact the occupied volume of the solid particles as the degree of freedom for the fluid particles. We present simulation results in two-and three-dimensional channel flow. The two-dimensional results serve as a verification by a comparison to analytic solutions. The three-dimensional results are used for a comparison with experimental measurements obtained from computer tomography of injection moulded ceramic microparts. We observe the best agreement of measurements with snapshots of the transient simulation for a ratio D-c/D-eta = 0.1 of the two model parameters.</abstract><doi>10.1098/rsta.2011.0043</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1098/rsta.2011.0043
ispartof
issn
language eng
recordid cdi_fraunhofer_primary_oai_fraunhofer_de_N_181210
source Fraunhofer-ePrints
title Smoothed particle hydrodynamics simulation of shear-induced powder migration in injection moulding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fraunhofer_E3A&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smoothed%20particle%20hydrodynamics%20simulation%20of%20shear-induced%20powder%20migration%20in%20injection%20moulding&rft.au=Kauzlaric,%20D&rft.date=2011&rft_id=info:doi/10.1098/rsta.2011.0043&rft_dat=%3Cfraunhofer_E3A%3Eoai_fraunhofer_de_N_181210%3C/fraunhofer_E3A%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true