Direct antidiabetic effect of leptin through triglyceride depletion of tissues

Leptin is currently believed to control body composition largely, if not entirely, via hypothalamic receptors that regulate food intake and thermogenesis. Here we demonstrate direct extraneural effects of leptin to deplete fat content of both adipocytes and nonadipocytes to levels far below those of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1997-04, Vol.94 (9), p.4637-4641
Hauptverfasser: Shimabukuro, M. (University of Texas Southwestern Medical Center, Dallas, TX.), Koyama, K, Chen, G, Wang, M.Y, Trieu, F, Lee, Y, Newgard, C.B, Unger, R.H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4641
container_issue 9
container_start_page 4637
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 94
creator Shimabukuro, M. (University of Texas Southwestern Medical Center, Dallas, TX.)
Koyama, K
Chen, G
Wang, M.Y
Trieu, F
Lee, Y
Newgard, C.B
Unger, R.H
description Leptin is currently believed to control body composition largely, if not entirely, via hypothalamic receptors that regulate food intake and thermogenesis. Here we demonstrate direct extraneural effects of leptin to deplete fat content of both adipocytes and nonadipocytes to levels far below those of pairfed controls. In cultured pancreatic islets, leptin lowered triglyceride (TG) content by preventing TG formation from free fatty acids (FFA) and by increasing FFA oxidation. In vivo hyperleptinemia, induced in normal rats by adenovirus gene transfer, depleted TG content in liver, skeletal muscle, and pancreas without increasing plasma FFA or ketones, suggesting intracellular oxidation. In islets of obese Zucker Diabetic Fatty rats with leptin receptor mutations, leptin had no effect in vivo or in vitro. The TG content was approximately 20 times normal, and esterification capacity was increased 3- to 4-fold. Thus, in rats with normal leptin receptors but not in Zucker Diabetic Fatty rats, nonadipocytes and adipocytes sterify FFA, store them as TG, and later oxidize them intracellularly via an "indirect pathway" of intracellular fatty acid metabolism controlled by leptin. By maintaining insulin sensitivity and preventing islet lipotoxicity, this activity of leptin may prevent adipogenic diabetes
doi_str_mv 10.1073/pnas.94.9.4637
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US9743808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42064</jstor_id><sourcerecordid>42064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-9e558917d880c74ab48bda73994fd84731c5d57c3a1cff85a9508d92c58786473</originalsourceid><addsrcrecordid>eNp9kc2PEyEYh4nRrHX16sHEZOJhbzPCAAMkXjbrZ7LRg-6ZUD5aGjqMwBj3v5exTa0ePJHwPL83L_wAeI5ghyDDr6dR5U6QTnRkwOwBWCEoUDsQAR-CFYQ9aznpyWPwJOcdhFBQDi_AhUCIQIJX4PNbn6wujRqLN16tbfG6sc4td9E1wU7Fj03Zpjhvtk1JfhPutU3e2MbYKVQ9jotYfM6zzU_BI6dCts-O5yW4e__u283H9vbLh08317etpgMrrbCUcoGY4RxqRtSa8LVRDAtBnOGEYaSpoUxjhbRznCpBITei15QzPlR-Cd4c5k7zem-NtmNJKsgp-b1K9zIqL_8mo9_KTfwhe8jYUONXx3iK3-vaRe591jYENdo4Z8m4qD_0W3z1j7iLcxrr0-okhBGnwyJ1B0mnmHOy7rQHgnIpSS4lSUGkkEtJNfDyfPuTfmzljC-5Ez3LX_2PSzeHUOzPUsUXB3GXS0wnk_RwIH-gU1GqTfJZ3n0VjGAOOf4Ftay3ZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201318566</pqid></control><display><type>article</type><title>Direct antidiabetic effect of leptin through triglyceride depletion of tissues</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Shimabukuro, M. (University of Texas Southwestern Medical Center, Dallas, TX.) ; Koyama, K ; Chen, G ; Wang, M.Y ; Trieu, F ; Lee, Y ; Newgard, C.B ; Unger, R.H</creator><creatorcontrib>Shimabukuro, M. (University of Texas Southwestern Medical Center, Dallas, TX.) ; Koyama, K ; Chen, G ; Wang, M.Y ; Trieu, F ; Lee, Y ; Newgard, C.B ; Unger, R.H</creatorcontrib><description>Leptin is currently believed to control body composition largely, if not entirely, via hypothalamic receptors that regulate food intake and thermogenesis. Here we demonstrate direct extraneural effects of leptin to deplete fat content of both adipocytes and nonadipocytes to levels far below those of pairfed controls. In cultured pancreatic islets, leptin lowered triglyceride (TG) content by preventing TG formation from free fatty acids (FFA) and by increasing FFA oxidation. In vivo hyperleptinemia, induced in normal rats by adenovirus gene transfer, depleted TG content in liver, skeletal muscle, and pancreas without increasing plasma FFA or ketones, suggesting intracellular oxidation. In islets of obese Zucker Diabetic Fatty rats with leptin receptor mutations, leptin had no effect in vivo or in vitro. The TG content was approximately 20 times normal, and esterification capacity was increased 3- to 4-fold. Thus, in rats with normal leptin receptors but not in Zucker Diabetic Fatty rats, nonadipocytes and adipocytes sterify FFA, store them as TG, and later oxidize them intracellularly via an "indirect pathway" of intracellular fatty acid metabolism controlled by leptin. By maintaining insulin sensitivity and preventing islet lipotoxicity, this activity of leptin may prevent adipogenic diabetes</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.94.9.4637</identifier><identifier>PMID: 9114043</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>3-Hydroxybutyric Acid ; ACIDE GRAS ; ACIDE PALMITIQUE ; ACIDO PALMITICO ; ACIDOS GRASOS ; Anatomy &amp; physiology ; Animals ; Biological Sciences ; Body fat ; Carrier Proteins - metabolism ; Culture Techniques ; Diabetes ; Diabetes Mellitus, Experimental - genetics ; Diabetes Mellitus, Experimental - metabolism ; ESTERIFICACION ; ESTERIFICATION ; Esterification - drug effects ; Fatty Acids, Nonesterified - blood ; FOIE ; Food intake ; Genotype ; HEMOLIPIDOS ; HIGADO ; HORMONAS ; HORMONE ; Hormones ; HUESOS ; Hydroxybutyrates - blood ; Hypoglycemic Agents - pharmacology ; INGESTION DE ALIMENTOS ; Islets of Langerhans - drug effects ; Leptin ; LIPIDE SANGUIN ; Liver ; Liver - metabolism ; Male ; METABOLISME DES LIPIDES ; METABOLISMO DE LIPIDOS ; Muscle, Skeletal - metabolism ; Nonesterified fatty acids ; Obesity ; OXIDACION ; Oxidation ; Oxidation-Reduction - drug effects ; OXYDATION ; PANCREAS ; PEPTIDE ; Peptides ; PEPTIDOS ; PESO ; POIDS ; PRISE ALIMENTAIRE (HOMME) ; Proteins - genetics ; Proteins - pharmacology ; RAT ; RATA ; Rats ; Rats, Wistar ; Rats, Zucker ; Receptors ; Receptors, Cell Surface ; Receptors, Leptin ; Recombinant Fusion Proteins - pharmacology ; Species Specificity ; TRANSFERENCIA DE GENES ; TRANSFERT DE GENE ; TRASTORNOS METABOLICOS ; TRIGLICERIDOS ; TRIGLYCERIDE ; Triglycerides ; Triglycerides - metabolism ; TROUBLE DU METABOLISME ; Weight</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1997-04, Vol.94 (9), p.4637-4641</ispartof><rights>Copyright 1997 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Apr 29, 1997</rights><rights>Copyright © 1997, The National Academy of Sciences of the USA 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-9e558917d880c74ab48bda73994fd84731c5d57c3a1cff85a9508d92c58786473</citedby><cites>FETCH-LOGICAL-c567t-9e558917d880c74ab48bda73994fd84731c5d57c3a1cff85a9508d92c58786473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/94/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42064$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42064$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9114043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimabukuro, M. (University of Texas Southwestern Medical Center, Dallas, TX.)</creatorcontrib><creatorcontrib>Koyama, K</creatorcontrib><creatorcontrib>Chen, G</creatorcontrib><creatorcontrib>Wang, M.Y</creatorcontrib><creatorcontrib>Trieu, F</creatorcontrib><creatorcontrib>Lee, Y</creatorcontrib><creatorcontrib>Newgard, C.B</creatorcontrib><creatorcontrib>Unger, R.H</creatorcontrib><title>Direct antidiabetic effect of leptin through triglyceride depletion of tissues</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Leptin is currently believed to control body composition largely, if not entirely, via hypothalamic receptors that regulate food intake and thermogenesis. Here we demonstrate direct extraneural effects of leptin to deplete fat content of both adipocytes and nonadipocytes to levels far below those of pairfed controls. In cultured pancreatic islets, leptin lowered triglyceride (TG) content by preventing TG formation from free fatty acids (FFA) and by increasing FFA oxidation. In vivo hyperleptinemia, induced in normal rats by adenovirus gene transfer, depleted TG content in liver, skeletal muscle, and pancreas without increasing plasma FFA or ketones, suggesting intracellular oxidation. In islets of obese Zucker Diabetic Fatty rats with leptin receptor mutations, leptin had no effect in vivo or in vitro. The TG content was approximately 20 times normal, and esterification capacity was increased 3- to 4-fold. Thus, in rats with normal leptin receptors but not in Zucker Diabetic Fatty rats, nonadipocytes and adipocytes sterify FFA, store them as TG, and later oxidize them intracellularly via an "indirect pathway" of intracellular fatty acid metabolism controlled by leptin. By maintaining insulin sensitivity and preventing islet lipotoxicity, this activity of leptin may prevent adipogenic diabetes</description><subject>3-Hydroxybutyric Acid</subject><subject>ACIDE GRAS</subject><subject>ACIDE PALMITIQUE</subject><subject>ACIDO PALMITICO</subject><subject>ACIDOS GRASOS</subject><subject>Anatomy &amp; physiology</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Body fat</subject><subject>Carrier Proteins - metabolism</subject><subject>Culture Techniques</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Experimental - genetics</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>ESTERIFICACION</subject><subject>ESTERIFICATION</subject><subject>Esterification - drug effects</subject><subject>Fatty Acids, Nonesterified - blood</subject><subject>FOIE</subject><subject>Food intake</subject><subject>Genotype</subject><subject>HEMOLIPIDOS</subject><subject>HIGADO</subject><subject>HORMONAS</subject><subject>HORMONE</subject><subject>Hormones</subject><subject>HUESOS</subject><subject>Hydroxybutyrates - blood</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>INGESTION DE ALIMENTOS</subject><subject>Islets of Langerhans - drug effects</subject><subject>Leptin</subject><subject>LIPIDE SANGUIN</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>METABOLISME DES LIPIDES</subject><subject>METABOLISMO DE LIPIDOS</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Nonesterified fatty acids</subject><subject>Obesity</subject><subject>OXIDACION</subject><subject>Oxidation</subject><subject>Oxidation-Reduction - drug effects</subject><subject>OXYDATION</subject><subject>PANCREAS</subject><subject>PEPTIDE</subject><subject>Peptides</subject><subject>PEPTIDOS</subject><subject>PESO</subject><subject>POIDS</subject><subject>PRISE ALIMENTAIRE (HOMME)</subject><subject>Proteins - genetics</subject><subject>Proteins - pharmacology</subject><subject>RAT</subject><subject>RATA</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rats, Zucker</subject><subject>Receptors</subject><subject>Receptors, Cell Surface</subject><subject>Receptors, Leptin</subject><subject>Recombinant Fusion Proteins - pharmacology</subject><subject>Species Specificity</subject><subject>TRANSFERENCIA DE GENES</subject><subject>TRANSFERT DE GENE</subject><subject>TRASTORNOS METABOLICOS</subject><subject>TRIGLICERIDOS</subject><subject>TRIGLYCERIDE</subject><subject>Triglycerides</subject><subject>Triglycerides - metabolism</subject><subject>TROUBLE DU METABOLISME</subject><subject>Weight</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2PEyEYh4nRrHX16sHEZOJhbzPCAAMkXjbrZ7LRg-6ZUD5aGjqMwBj3v5exTa0ePJHwPL83L_wAeI5ghyDDr6dR5U6QTnRkwOwBWCEoUDsQAR-CFYQ9aznpyWPwJOcdhFBQDi_AhUCIQIJX4PNbn6wujRqLN16tbfG6sc4td9E1wU7Fj03Zpjhvtk1JfhPutU3e2MbYKVQ9jotYfM6zzU_BI6dCts-O5yW4e__u283H9vbLh08317etpgMrrbCUcoGY4RxqRtSa8LVRDAtBnOGEYaSpoUxjhbRznCpBITei15QzPlR-Cd4c5k7zem-NtmNJKsgp-b1K9zIqL_8mo9_KTfwhe8jYUONXx3iK3-vaRe591jYENdo4Z8m4qD_0W3z1j7iLcxrr0-okhBGnwyJ1B0mnmHOy7rQHgnIpSS4lSUGkkEtJNfDyfPuTfmzljC-5Ez3LX_2PSzeHUOzPUsUXB3GXS0wnk_RwIH-gU1GqTfJZ3n0VjGAOOf4Ftay3ZA</recordid><startdate>19970429</startdate><enddate>19970429</enddate><creator>Shimabukuro, M. (University of Texas Southwestern Medical Center, Dallas, TX.)</creator><creator>Koyama, K</creator><creator>Chen, G</creator><creator>Wang, M.Y</creator><creator>Trieu, F</creator><creator>Lee, Y</creator><creator>Newgard, C.B</creator><creator>Unger, R.H</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970429</creationdate><title>Direct antidiabetic effect of leptin through triglyceride depletion of tissues</title><author>Shimabukuro, M. (University of Texas Southwestern Medical Center, Dallas, TX.) ; Koyama, K ; Chen, G ; Wang, M.Y ; Trieu, F ; Lee, Y ; Newgard, C.B ; Unger, R.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-9e558917d880c74ab48bda73994fd84731c5d57c3a1cff85a9508d92c58786473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>3-Hydroxybutyric Acid</topic><topic>ACIDE GRAS</topic><topic>ACIDE PALMITIQUE</topic><topic>ACIDO PALMITICO</topic><topic>ACIDOS GRASOS</topic><topic>Anatomy &amp; physiology</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Body fat</topic><topic>Carrier Proteins - metabolism</topic><topic>Culture Techniques</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Experimental - genetics</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>ESTERIFICACION</topic><topic>ESTERIFICATION</topic><topic>Esterification - drug effects</topic><topic>Fatty Acids, Nonesterified - blood</topic><topic>FOIE</topic><topic>Food intake</topic><topic>Genotype</topic><topic>HEMOLIPIDOS</topic><topic>HIGADO</topic><topic>HORMONAS</topic><topic>HORMONE</topic><topic>Hormones</topic><topic>HUESOS</topic><topic>Hydroxybutyrates - blood</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>INGESTION DE ALIMENTOS</topic><topic>Islets of Langerhans - drug effects</topic><topic>Leptin</topic><topic>LIPIDE SANGUIN</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>METABOLISME DES LIPIDES</topic><topic>METABOLISMO DE LIPIDOS</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Nonesterified fatty acids</topic><topic>Obesity</topic><topic>OXIDACION</topic><topic>Oxidation</topic><topic>Oxidation-Reduction - drug effects</topic><topic>OXYDATION</topic><topic>PANCREAS</topic><topic>PEPTIDE</topic><topic>Peptides</topic><topic>PEPTIDOS</topic><topic>PESO</topic><topic>POIDS</topic><topic>PRISE ALIMENTAIRE (HOMME)</topic><topic>Proteins - genetics</topic><topic>Proteins - pharmacology</topic><topic>RAT</topic><topic>RATA</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rats, Zucker</topic><topic>Receptors</topic><topic>Receptors, Cell Surface</topic><topic>Receptors, Leptin</topic><topic>Recombinant Fusion Proteins - pharmacology</topic><topic>Species Specificity</topic><topic>TRANSFERENCIA DE GENES</topic><topic>TRANSFERT DE GENE</topic><topic>TRASTORNOS METABOLICOS</topic><topic>TRIGLICERIDOS</topic><topic>TRIGLYCERIDE</topic><topic>Triglycerides</topic><topic>Triglycerides - metabolism</topic><topic>TROUBLE DU METABOLISME</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimabukuro, M. (University of Texas Southwestern Medical Center, Dallas, TX.)</creatorcontrib><creatorcontrib>Koyama, K</creatorcontrib><creatorcontrib>Chen, G</creatorcontrib><creatorcontrib>Wang, M.Y</creatorcontrib><creatorcontrib>Trieu, F</creatorcontrib><creatorcontrib>Lee, Y</creatorcontrib><creatorcontrib>Newgard, C.B</creatorcontrib><creatorcontrib>Unger, R.H</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimabukuro, M. (University of Texas Southwestern Medical Center, Dallas, TX.)</au><au>Koyama, K</au><au>Chen, G</au><au>Wang, M.Y</au><au>Trieu, F</au><au>Lee, Y</au><au>Newgard, C.B</au><au>Unger, R.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct antidiabetic effect of leptin through triglyceride depletion of tissues</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1997-04-29</date><risdate>1997</risdate><volume>94</volume><issue>9</issue><spage>4637</spage><epage>4641</epage><pages>4637-4641</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Leptin is currently believed to control body composition largely, if not entirely, via hypothalamic receptors that regulate food intake and thermogenesis. Here we demonstrate direct extraneural effects of leptin to deplete fat content of both adipocytes and nonadipocytes to levels far below those of pairfed controls. In cultured pancreatic islets, leptin lowered triglyceride (TG) content by preventing TG formation from free fatty acids (FFA) and by increasing FFA oxidation. In vivo hyperleptinemia, induced in normal rats by adenovirus gene transfer, depleted TG content in liver, skeletal muscle, and pancreas without increasing plasma FFA or ketones, suggesting intracellular oxidation. In islets of obese Zucker Diabetic Fatty rats with leptin receptor mutations, leptin had no effect in vivo or in vitro. The TG content was approximately 20 times normal, and esterification capacity was increased 3- to 4-fold. Thus, in rats with normal leptin receptors but not in Zucker Diabetic Fatty rats, nonadipocytes and adipocytes sterify FFA, store them as TG, and later oxidize them intracellularly via an "indirect pathway" of intracellular fatty acid metabolism controlled by leptin. By maintaining insulin sensitivity and preventing islet lipotoxicity, this activity of leptin may prevent adipogenic diabetes</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9114043</pmid><doi>10.1073/pnas.94.9.4637</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1997-04, Vol.94 (9), p.4637-4641
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US9743808
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 3-Hydroxybutyric Acid
ACIDE GRAS
ACIDE PALMITIQUE
ACIDO PALMITICO
ACIDOS GRASOS
Anatomy & physiology
Animals
Biological Sciences
Body fat
Carrier Proteins - metabolism
Culture Techniques
Diabetes
Diabetes Mellitus, Experimental - genetics
Diabetes Mellitus, Experimental - metabolism
ESTERIFICACION
ESTERIFICATION
Esterification - drug effects
Fatty Acids, Nonesterified - blood
FOIE
Food intake
Genotype
HEMOLIPIDOS
HIGADO
HORMONAS
HORMONE
Hormones
HUESOS
Hydroxybutyrates - blood
Hypoglycemic Agents - pharmacology
INGESTION DE ALIMENTOS
Islets of Langerhans - drug effects
Leptin
LIPIDE SANGUIN
Liver
Liver - metabolism
Male
METABOLISME DES LIPIDES
METABOLISMO DE LIPIDOS
Muscle, Skeletal - metabolism
Nonesterified fatty acids
Obesity
OXIDACION
Oxidation
Oxidation-Reduction - drug effects
OXYDATION
PANCREAS
PEPTIDE
Peptides
PEPTIDOS
PESO
POIDS
PRISE ALIMENTAIRE (HOMME)
Proteins - genetics
Proteins - pharmacology
RAT
RATA
Rats
Rats, Wistar
Rats, Zucker
Receptors
Receptors, Cell Surface
Receptors, Leptin
Recombinant Fusion Proteins - pharmacology
Species Specificity
TRANSFERENCIA DE GENES
TRANSFERT DE GENE
TRASTORNOS METABOLICOS
TRIGLICERIDOS
TRIGLYCERIDE
Triglycerides
Triglycerides - metabolism
TROUBLE DU METABOLISME
Weight
title Direct antidiabetic effect of leptin through triglyceride depletion of tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20antidiabetic%20effect%20of%20leptin%20through%20triglyceride%20depletion%20of%20tissues&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Shimabukuro,%20M.%20(University%20of%20Texas%20Southwestern%20Medical%20Center,%20Dallas,%20TX.)&rft.date=1997-04-29&rft.volume=94&rft.issue=9&rft.spage=4637&rft.epage=4641&rft.pages=4637-4641&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.94.9.4637&rft_dat=%3Cjstor_fao_a%3E42064%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201318566&rft_id=info:pmid/9114043&rft_jstor_id=42064&rfr_iscdi=true