Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification
Plant-specific polyketide synthase genes constitute a gene superfamily, including universal chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing) (EC 2.3.1.74)] genes, sporadically distributed stilbene synthase (SS) genes, and atypical, as-yet-uncharacterized CHS-like ge...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1996-08, Vol.93 (17), p.9033-9038 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9038 |
---|---|
container_issue | 17 |
container_start_page | 9033 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 93 |
creator | Helariutta, Y. (University of Helsinki, Helsinki, Finland.) Kotilainen, M Elomaa, P Kalkkinen, N Bremer, K Teeri, T.H Albert, V.A |
description | Plant-specific polyketide synthase genes constitute a gene superfamily, including universal chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing) (EC 2.3.1.74)] genes, sporadically distributed stilbene synthase (SS) genes, and atypical, as-yet-uncharacterized CHS-like genes. We have recently isolated from Gerbera hybrida (Asteraceae) an unusual CHS-like gene, GCHS2, which codes for an enzyme with structural and enzymatic properties as well as ontogenetic distribution distinct from both CHS and SS. Here, we show that the GCHS2-like function is encoded in the Gerbera genome by a family of at least three transcriptionally active genes. Conservation within the GCHS2 family was exploited with selective PCR to study the occurrence of GCHS2-like genes in other Asteraceae. Parsimony analysis of the amplified sequences together with CHS-like genes isolated from other taxa of angiosperm subclass Asteridae suggests that GCHS2 has evolved from CHS via a gene duplication event that occurred before the diversification of the Asteraceae. Enzyme activity analysis of proteins produced in vitro indicates that the GCHS2 reaction is a non-SS variant of the CHS reaction, with both different substrate specificity (to benzoyl-CoA) and a truncated catalytic profile. Together with the recent results of Durbin et al. [Durbin, M. L., Learn, G. H., Jr., Huttley, G. A. & Clegg, M. T. (1995) Proc. Natl. Acad. Sci. USA 92, 3338-3342], our study confirms a gene duplication-based model that explains how various related functions have arisen from CHS during plant evolution. |
doi_str_mv | 10.1073/pnas.93.17.9033 |
format | Article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US9632219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>39997</jstor_id><sourcerecordid>39997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-4ae9aec4746d0c4fb034b754ea809d35314302ac11747c263d87e0d6d444103e3</originalsourceid><addsrcrecordid>eNqFks-PEyEUxydGs9bq2cREQzzowbQLAzMMxkuz669kEw-6Xgll3rQ0FCowXfuP-PfKtLW6HvREyPfzvu89-BbFY4KnBHN6vnEqTgWdEj4VmNI7xYhgQSY1E_huMcK45JOGlex-8SDGFcZYVA0-K84aLgRhYlT8uOw31miVjHdIuRZ1vdPDRVnUmi2EBTgNyDiUloD0UlntHaC4c2mpIqAsA-rU2tgd8h2axQRBaVDwGsHW237ve2PSEsV-HlNQae_iFrDvlhsru0tGo2jWeZDuOMrD4l6nbIRHx3NcXL97--Xiw-Tq0_uPF7Oria44TROmQCjQjLO6xZp1c0zZnFcMVINFSytKGMWl0oRwxnVZ07bhgNu6ZYwRTIGOi1cH33gDm34uN8GsVdhJr4y8NF9n0oeF7HvZlLjhmX5zoDO6hlaDywvZW0W3FWeWcuG3kjZV_p1x8eJYHvy3HmKSaxM1WKsc-D5K3tCyEkT8FyRVXZclZhl8_he48n3IfxdliQktS8GGtucHSAcfY4DuNDDBcgiRHEIkBZWEyyFEueLpn3ue-GNqsv7sqA-Fv9RbBi__CciutzbB95TJJwdyFZMPJ5QKIfhvsVNeqkUwUV5_FnXeKz_STxce8DQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201322940</pqid></control><display><type>article</type><title>Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Helariutta, Y. (University of Helsinki, Helsinki, Finland.) ; Kotilainen, M ; Elomaa, P ; Kalkkinen, N ; Bremer, K ; Teeri, T.H ; Albert, V.A</creator><creatorcontrib>Helariutta, Y. (University of Helsinki, Helsinki, Finland.) ; Kotilainen, M ; Elomaa, P ; Kalkkinen, N ; Bremer, K ; Teeri, T.H ; Albert, V.A</creatorcontrib><description>Plant-specific polyketide synthase genes constitute a gene superfamily, including universal chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing) (EC 2.3.1.74)] genes, sporadically distributed stilbene synthase (SS) genes, and atypical, as-yet-uncharacterized CHS-like genes. We have recently isolated from Gerbera hybrida (Asteraceae) an unusual CHS-like gene, GCHS2, which codes for an enzyme with structural and enzymatic properties as well as ontogenetic distribution distinct from both CHS and SS. Here, we show that the GCHS2-like function is encoded in the Gerbera genome by a family of at least three transcriptionally active genes. Conservation within the GCHS2 family was exploited with selective PCR to study the occurrence of GCHS2-like genes in other Asteraceae. Parsimony analysis of the amplified sequences together with CHS-like genes isolated from other taxa of angiosperm subclass Asteridae suggests that GCHS2 has evolved from CHS via a gene duplication event that occurred before the diversification of the Asteraceae. Enzyme activity analysis of proteins produced in vitro indicates that the GCHS2 reaction is a non-SS variant of the CHS reaction, with both different substrate specificity (to benzoyl-CoA) and a truncated catalytic profile. Together with the recent results of Durbin et al. [Durbin, M. L., Learn, G. H., Jr., Huttley, G. A. & Clegg, M. T. (1995) Proc. Natl. Acad. Sci. USA 92, 3338-3342], our study confirms a gene duplication-based model that explains how various related functions have arisen from CHS during plant evolution.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.17.9033</identifier><identifier>PMID: 8799149</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>ACILTRANSFERASA ; ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; Acyl Coenzyme A - metabolism ; ACYLTRANSFERASE ; Acyltransferases - genetics ; Amino Acid Sequence ; Amino acids ; Base Sequence ; Biological Evolution ; Chalconoids ; COMPOSICION QUIMICA ; COMPOSITAE ; COMPOSITION CHIMIQUE ; DAHLIA ; Divergent evolution ; DNA, Complementary - genetics ; Enzymes ; Evolution ; FILOGENIA ; GENE ; Gene duplication ; Gene Library ; GENES ; Genes, Plant ; GERBERA ; Gerbera hybrida ; Malonyl Coenzyme A - metabolism ; Molecular Sequence Data ; Multigene Family ; Parsimony ; Parsley ; Phylogenetics ; PHYLOGENIE ; Plants - enzymology ; Plants - genetics ; SECUENCIA NUCLEOTIDICA ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; SEQUENCE NUCLEOTIDIQUE ; Species Specificity ; Substrate Specificity ; TARAXACUM ; TRANSFERASAS ; TRANSFERASE</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-08, Vol.93 (17), p.9033-9038</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Aug 20, 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-4ae9aec4746d0c4fb034b754ea809d35314302ac11747c263d87e0d6d444103e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/39997$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/39997$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8799149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-82087$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Helariutta, Y. (University of Helsinki, Helsinki, Finland.)</creatorcontrib><creatorcontrib>Kotilainen, M</creatorcontrib><creatorcontrib>Elomaa, P</creatorcontrib><creatorcontrib>Kalkkinen, N</creatorcontrib><creatorcontrib>Bremer, K</creatorcontrib><creatorcontrib>Teeri, T.H</creatorcontrib><creatorcontrib>Albert, V.A</creatorcontrib><title>Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Plant-specific polyketide synthase genes constitute a gene superfamily, including universal chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing) (EC 2.3.1.74)] genes, sporadically distributed stilbene synthase (SS) genes, and atypical, as-yet-uncharacterized CHS-like genes. We have recently isolated from Gerbera hybrida (Asteraceae) an unusual CHS-like gene, GCHS2, which codes for an enzyme with structural and enzymatic properties as well as ontogenetic distribution distinct from both CHS and SS. Here, we show that the GCHS2-like function is encoded in the Gerbera genome by a family of at least three transcriptionally active genes. Conservation within the GCHS2 family was exploited with selective PCR to study the occurrence of GCHS2-like genes in other Asteraceae. Parsimony analysis of the amplified sequences together with CHS-like genes isolated from other taxa of angiosperm subclass Asteridae suggests that GCHS2 has evolved from CHS via a gene duplication event that occurred before the diversification of the Asteraceae. Enzyme activity analysis of proteins produced in vitro indicates that the GCHS2 reaction is a non-SS variant of the CHS reaction, with both different substrate specificity (to benzoyl-CoA) and a truncated catalytic profile. Together with the recent results of Durbin et al. [Durbin, M. L., Learn, G. H., Jr., Huttley, G. A. & Clegg, M. T. (1995) Proc. Natl. Acad. Sci. USA 92, 3338-3342], our study confirms a gene duplication-based model that explains how various related functions have arisen from CHS during plant evolution.</description><subject>ACILTRANSFERASA</subject><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>ACYLTRANSFERASE</subject><subject>Acyltransferases - genetics</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Base Sequence</subject><subject>Biological Evolution</subject><subject>Chalconoids</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITAE</subject><subject>COMPOSITION CHIMIQUE</subject><subject>DAHLIA</subject><subject>Divergent evolution</subject><subject>DNA, Complementary - genetics</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>FILOGENIA</subject><subject>GENE</subject><subject>Gene duplication</subject><subject>Gene Library</subject><subject>GENES</subject><subject>Genes, Plant</subject><subject>GERBERA</subject><subject>Gerbera hybrida</subject><subject>Malonyl Coenzyme A - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>Parsimony</subject><subject>Parsley</subject><subject>Phylogenetics</subject><subject>PHYLOGENIE</subject><subject>Plants - enzymology</subject><subject>Plants - genetics</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>Sequence Analysis, DNA</subject><subject>Sequence Homology, Amino Acid</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>Species Specificity</subject><subject>Substrate Specificity</subject><subject>TARAXACUM</subject><subject>TRANSFERASAS</subject><subject>TRANSFERASE</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks-PEyEUxydGs9bq2cREQzzowbQLAzMMxkuz669kEw-6Xgll3rQ0FCowXfuP-PfKtLW6HvREyPfzvu89-BbFY4KnBHN6vnEqTgWdEj4VmNI7xYhgQSY1E_huMcK45JOGlex-8SDGFcZYVA0-K84aLgRhYlT8uOw31miVjHdIuRZ1vdPDRVnUmi2EBTgNyDiUloD0UlntHaC4c2mpIqAsA-rU2tgd8h2axQRBaVDwGsHW237ve2PSEsV-HlNQae_iFrDvlhsru0tGo2jWeZDuOMrD4l6nbIRHx3NcXL97--Xiw-Tq0_uPF7Oria44TROmQCjQjLO6xZp1c0zZnFcMVINFSytKGMWl0oRwxnVZ07bhgNu6ZYwRTIGOi1cH33gDm34uN8GsVdhJr4y8NF9n0oeF7HvZlLjhmX5zoDO6hlaDywvZW0W3FWeWcuG3kjZV_p1x8eJYHvy3HmKSaxM1WKsc-D5K3tCyEkT8FyRVXZclZhl8_he48n3IfxdliQktS8GGtucHSAcfY4DuNDDBcgiRHEIkBZWEyyFEueLpn3ue-GNqsv7sqA-Fv9RbBi__CciutzbB95TJJwdyFZMPJ5QKIfhvsVNeqkUwUV5_FnXeKz_STxce8DQ</recordid><startdate>19960820</startdate><enddate>19960820</enddate><creator>Helariutta, Y. (University of Helsinki, Helsinki, Finland.)</creator><creator>Kotilainen, M</creator><creator>Elomaa, P</creator><creator>Kalkkinen, N</creator><creator>Bremer, K</creator><creator>Teeri, T.H</creator><creator>Albert, V.A</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>19960820</creationdate><title>Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification</title><author>Helariutta, Y. (University of Helsinki, Helsinki, Finland.) ; Kotilainen, M ; Elomaa, P ; Kalkkinen, N ; Bremer, K ; Teeri, T.H ; Albert, V.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-4ae9aec4746d0c4fb034b754ea809d35314302ac11747c263d87e0d6d444103e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>ACILTRANSFERASA</topic><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>ACYLTRANSFERASE</topic><topic>Acyltransferases - genetics</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Base Sequence</topic><topic>Biological Evolution</topic><topic>Chalconoids</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITAE</topic><topic>COMPOSITION CHIMIQUE</topic><topic>DAHLIA</topic><topic>Divergent evolution</topic><topic>DNA, Complementary - genetics</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>FILOGENIA</topic><topic>GENE</topic><topic>Gene duplication</topic><topic>Gene Library</topic><topic>GENES</topic><topic>Genes, Plant</topic><topic>GERBERA</topic><topic>Gerbera hybrida</topic><topic>Malonyl Coenzyme A - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>Parsimony</topic><topic>Parsley</topic><topic>Phylogenetics</topic><topic>PHYLOGENIE</topic><topic>Plants - enzymology</topic><topic>Plants - genetics</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>Sequence Analysis, DNA</topic><topic>Sequence Homology, Amino Acid</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>Species Specificity</topic><topic>Substrate Specificity</topic><topic>TARAXACUM</topic><topic>TRANSFERASAS</topic><topic>TRANSFERASE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helariutta, Y. (University of Helsinki, Helsinki, Finland.)</creatorcontrib><creatorcontrib>Kotilainen, M</creatorcontrib><creatorcontrib>Elomaa, P</creatorcontrib><creatorcontrib>Kalkkinen, N</creatorcontrib><creatorcontrib>Bremer, K</creatorcontrib><creatorcontrib>Teeri, T.H</creatorcontrib><creatorcontrib>Albert, V.A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helariutta, Y. (University of Helsinki, Helsinki, Finland.)</au><au>Kotilainen, M</au><au>Elomaa, P</au><au>Kalkkinen, N</au><au>Bremer, K</au><au>Teeri, T.H</au><au>Albert, V.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-08-20</date><risdate>1996</risdate><volume>93</volume><issue>17</issue><spage>9033</spage><epage>9038</epage><pages>9033-9038</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Plant-specific polyketide synthase genes constitute a gene superfamily, including universal chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing) (EC 2.3.1.74)] genes, sporadically distributed stilbene synthase (SS) genes, and atypical, as-yet-uncharacterized CHS-like genes. We have recently isolated from Gerbera hybrida (Asteraceae) an unusual CHS-like gene, GCHS2, which codes for an enzyme with structural and enzymatic properties as well as ontogenetic distribution distinct from both CHS and SS. Here, we show that the GCHS2-like function is encoded in the Gerbera genome by a family of at least three transcriptionally active genes. Conservation within the GCHS2 family was exploited with selective PCR to study the occurrence of GCHS2-like genes in other Asteraceae. Parsimony analysis of the amplified sequences together with CHS-like genes isolated from other taxa of angiosperm subclass Asteridae suggests that GCHS2 has evolved from CHS via a gene duplication event that occurred before the diversification of the Asteraceae. Enzyme activity analysis of proteins produced in vitro indicates that the GCHS2 reaction is a non-SS variant of the CHS reaction, with both different substrate specificity (to benzoyl-CoA) and a truncated catalytic profile. Together with the recent results of Durbin et al. [Durbin, M. L., Learn, G. H., Jr., Huttley, G. A. & Clegg, M. T. (1995) Proc. Natl. Acad. Sci. USA 92, 3338-3342], our study confirms a gene duplication-based model that explains how various related functions have arisen from CHS during plant evolution.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8799149</pmid><doi>10.1073/pnas.93.17.9033</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1996-08, Vol.93 (17), p.9033-9038 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US9632219 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | ACILTRANSFERASA ACTIVIDAD ENZIMATICA ACTIVITE ENZYMATIQUE Acyl Coenzyme A - metabolism ACYLTRANSFERASE Acyltransferases - genetics Amino Acid Sequence Amino acids Base Sequence Biological Evolution Chalconoids COMPOSICION QUIMICA COMPOSITAE COMPOSITION CHIMIQUE DAHLIA Divergent evolution DNA, Complementary - genetics Enzymes Evolution FILOGENIA GENE Gene duplication Gene Library GENES Genes, Plant GERBERA Gerbera hybrida Malonyl Coenzyme A - metabolism Molecular Sequence Data Multigene Family Parsimony Parsley Phylogenetics PHYLOGENIE Plants - enzymology Plants - genetics SECUENCIA NUCLEOTIDICA Sequence Analysis, DNA Sequence Homology, Amino Acid SEQUENCE NUCLEOTIDIQUE Species Specificity Substrate Specificity TARAXACUM TRANSFERASAS TRANSFERASE |
title | Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duplication%20and%20functional%20divergence%20in%20the%20chalcone%20synthase%20gene%20family%20of%20Asteraceae:%20evolution%20with%20substrate%20change%20and%20catalytic%20simplification&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Helariutta,%20Y.%20(University%20of%20Helsinki,%20Helsinki,%20Finland.)&rft.date=1996-08-20&rft.volume=93&rft.issue=17&rft.spage=9033&rft.epage=9038&rft.pages=9033-9038&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.17.9033&rft_dat=%3Cjstor_fao_a%3E39997%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201322940&rft_id=info:pmid/8799149&rft_jstor_id=39997&rfr_iscdi=true |